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Flows in thin-walled, collapsible tubes are of fundamental importance to various 
physiologic phenomena and clinical devices. 

A one-dimensional, unsteady theory is developed for flows generated either by 
externally applied pressures or by body forces. Part 1 deals with small-amplitude, 
linearized flows, part 2 with large amplitude, nonlinear flows. Experimental results 
for a tube collapsing under external pressure are given in part 3, together with theo- 
retical interpretations and comparative results of numerical simulations. 

Several new and unanticipated phenomena are revealed. These are in part asso- 
ciated with the highly nonlinear ‘equation of state’ (transmural pressure versus area) 
for a partially collapsed tube, and in part with whether the flow speed is sub- or super- 
critical relative to the speed of area waves. For instance, a flow produced by a spatially 
uniform external pressure applied to a limited region becomes choked a t  a flow- 
limiting throat a t  which point the fluid speed reaches the local wave speed. This 
throat forms a t  the edge of the pressurized region. The critical velocity can be exceeded 
with the application of certain types of spatially graded external pressures. 

’ 

CONTENTS 
1. Introduction 
2. Formulation of the one-dimensional theory 

Part 1. Linearized theory for small amplitudes 
3. Formulation of small-amplitude theory 
4. Solution by a linear method of characteristics 
5.  Generation and transmission of waves 
6. Distributions of applied pressure yielding the homogeneous 

7. Solutions with prescribed area variation 
8. Wave generation in a moving fluid 
9. Wave transmission and reflexion in a moving fluid 

wave equation 

Part 2. Nonlinear theory 
10. Exact solutions for area changing only in time 
11. The characteristic curves 
12. Simple waves 
13. Collapse of a tube by a ramp of external pressure 
14. Numerical integrations of the characteristic equations 

7 
8 

17 

19 
27 
28 
31 

36 
37 
38 
47 
56 

0022-1 120/79/4305-7540 $02.00 @ 1979 Cambridge University Press 

I 



2 R. D. Kamm and A .  H. Shapiro 

Part 3. A simple experiment and its interpretation 
15. Description of the experiment 
16. General character of the collapse process 
17.  Order-of-magnitude estimates 
18. Experimental results and comparison with numerical integrations 
19. Theoretical details of the collapse process 

page 60 
62 
65 
68 
74 

1. Introduction 
1.1 .  The problem 

This paper deals with unsteady, one-dimensional flows in thin-walled compliant tubes, 
particularly under conditions where the tube is partially collapsed as the result of a 
negative transmural pressure (internal pressure p minus external pressure p,). The 
flows considered are generated either by the application of external pressure or by 
body forces. Also included in the theory are the effects of friction and other dissipative 
losses, of inflow from t'ributaries, and of non-uniformities due to longitudinal gradients 
in tube diameter and wall thickness. 

1.2. Context of the problem 

Flows in thin-walled distensible and collapsible tubes have numerous applications to 
physiology and to medical devices. 

Previous investigations have dealt mainly with unsteady flows in the range of 
positive transmural pressures, with the vessel distended and of circular cross-section 
(Rudinger 1970; Attinger 1964; Olsen & Shapiro 1967; Kivity & Collins 1974; Beam 
1968). These are applicable to a wide range of arterial blood flow conditions, but they 
fail when the transmural pressure, p -pe,  becomes negative and the vessel assumes a 
collapsed configuration. 

Vessel collapse is most readily observed in the veins (e.g. the jugular vein when 
standing erect, or the veins of the hand when one's arm is raised), but the arteries 
also collapse when subjected to high external pressure. The airways of the lung are 
known to collapse during a cough and in the manoeuvre of forced expiration common 
to tests of pulmonary function. Similar phenomena are thought to occur in the urethra 
during micturition by reason of elastic constrictions due to tissue pressure (Griffiths 
1969, 1971 a, 1973). Several other physiological examples of steady or quasi-steady 
collapsible-tube flows exist, as well as many that occur in diagnostic and therapeutic 
devices (Shapiro 1977a). 

Recently, steady and quasi-steady flows in collapsible tubes have become the 
object of study (Griffiths 1971a, 3;  Oates 1975; Shapiro 19773). These investigations 
have focused primarily on those aspects having to do with the relative magnitudes of 
the fluid velocity u and the wave speed c, as well as on transitions between sub- and 
supercritical flow (u < c and u > c, respectively). Since the equations governing 
steady flow in collapsible tubes closely resemble those for either free surface flow or 
compressible fluid flow in a duct of varying cross-sectional area, these studies parallel 
closely the well-known methods developed for gasdynamics and free-surface flows 
(e.g. Shapiro & Hawthorne 1947). 
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1.3. Objectives 

The theoretical and experimental studies to be described were initially motivated by 
the desire to understand better, and to improve upon, a non-invasive, fluid-mechanical 
method for preventing deep vein thrombosis, i.e. clotting, with its attendant risk of 
pulmonary embolism, in patients during and after surgery (Collins 1976; Roberts & 
Cotton 1975). I n  this technique, currently under clinical trial, the legs are intermit- 
tently compressed by pressurization of double-walled boots extending to the knees; 
the veins are thereby periodically collapsed and venous stasis is prevented. 

However, the understanding of similar unsteady flows is significant t o  many other 
physiological phenomena and clinical devices, among which are: ( a )  flow through the 
lung airways during either a cough (Ross, Gramiak & Rahn 1955; Mead et al. 1967) 
or a forced expiration (Macklem 8: Mead 1967); ( 6 )  regulation of cardiac output by 
collapse of the venae cavae (Wexler et al. 1968; Guyton, Langston & Carrier 1962); 
(c)  unsteady effects on the venous flow returning to the heart, produced by contractions 
of the right atrium and by respiratory waves (Wexler et al. 1968; Brawley et al. 1966); 
( d )  unsteady flows produced by high accelerations from collisional impact (Kivity & 
Collins 1974); ( e )  the method of intra-aortic balloon pumping for temporary cardiac 
assist now coming into widespread use (Kantrowitz 1968; McMahon et al. 1971); ( f )  
the method of external cardiac assist employing intermittent external compression 
of the arteries of the lower extremities (Soroff et al. 1969); (9)  the cardio-ballistic 
method of external cardiac assist, using an oscillating table (Arnitzenius et al. 1970); 
( h )  prosthetic heart pumps that use collapsing bladders (Weissman & Mockros, 1967). 

The objective of the paper, then, is t o  develop by theory and experiment, and in a 
quite general fashion, an  understanding of unsteady JEozus i n  collapsible tubes when 
subjected to external pressure or body forces. Although the theory is one-dimensional, 
it is otherwise quite general in that i t  allows for friction, for spatial gradients in the 
resting cross-sectional area and vessel stiffness, and for temporal and spatial gradients 
in external pressure and in body force per unit volume. It can approximate flows in a 
branching system of vessels and accepts any constitutive expression or ‘tube law’ 
relating transmural pressure to  local cross-sectional area. 

1.4. Structure of the paper 

The paper is divided into three interconnected parts, preceded by a formulation of 
the one-dimensional theory and a discussion of certain concepts peculiar to  collapsible- 
tube flows. Part 1 deals with the linearized theory for small-amI;.litude phenomena; 
this introduces in a simple manner many of the phenomena later demonstrated by the 
nonlinear theory of part 2. The latter deals in addition with the powerful nonlinear 
phenomena produced by the peculiar ‘eqnat’ion of state’ (i.e. the tube law) of collap- 
sible tubes. Part 3 present>s results for some simple experiments, compares the experi- 
mental data with numerical simulations, and interprets these in the context of parts 
1 and 2. 

Although the experiment of part 3, and many of the examples of parts 1 and 2, 
refer specifically to the collapse of a tube by externa.1 pressure, the methods as well as 
many of the particular results are of general applicability to unsteady flows in collap- 
sible tubes. 
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2. Formulation of the one-dimensional theory 
2.1. Description and assumptions of the model 

We consider unsteady flows in relatively long, compliant tubes. Longitudinal non- 
uniformities in the tube are represented by the gradients of neutral area A ,  (corres- 
ponding to zero transmural pressure), and by the gradient of circumferential bending’, 
hrp; the latter is inversely proportional to the local compliance when the tube is par- 
tially collapsed. 

Incompressible JEuid. In  cases of practical interest, the fluid is either a liquid or a 
gas flowing at  low Mach number. Accordingly, the compliance of the system is essen- 
tially that of the tube itself. The fluid is therefore assumed to be incompressible. 

One-dimensionality. The longitudinal gradient of area, (1 / A )  (aA/ax), is assumed 
to be small compared with unity. This implies that the characteristic wavelength 
of area variation is large compared with the tube diameter. The equations of con- 
tinuity and of motion then indicate that the transverse variation in pressure over 
any cross-section is negligibly small. Therefore the flow is treated as quasi-one- 
dimensional in terms of a uniform pressurep(x, t )  and a uniform speed u(x, t )  over each 
cross-section. 

Qua,si-static tube law. The long-wavelength assumption has two further consequences 
concerning the mechanics of the tube: (a )  the inertia of the tube wall is negligible; and 
(b) ,  as discussed later, the effects of longitudinal tension in the tube wall are negligible. 
We assume in addition that the tube material exhibits no visco-elastic effects. All 
this makes it possible to employ, for the so-called ‘tube law) (i.e. the relationship 
between the cross-sectional area A and the transmural pressure difference p -pJ ,  
data determined experimentally with very long tubes under static conditions. 

2.2. Governing equations 

Continuity. Conservation of mass for an incompressible fluid requires that 

where x and t denote distance and time, respectively, and qr, is the volume flow rate 
per unit length entering the tube from tributaries. 

Momentum. Taking account of wall friction by means of a wall shear stress 7, 
opposing the flow, and assuming that the added flow qL enters with a component of 
velocity uLx along x (note that, if qL < 0, then uLx = u) ,  the dynamical equation may 
be written as 

4 7, QL(U - ULX) - au au i a 1 - + U- +- - (1, -pe)  + - - - G, +- - + 
at ax pax p ax. 0,. P 

- 0, A 

where G, is the x component of all body forces per-unit mass (including gravity as 
well as d’illembert forces associated with an accelerating reference frame), and D, 
is the hydraulic diameter. 

It is evident that body forces, friction, and the momentum deficiency of inflow from 
tributaries, all produce dynamical effects similar to those generated by an external 
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pressure gradient. For instance, accelerations resulting from collisional impact or 
blows are equivalent to a linear variation of external pressure. 

Tube law. For a long tube with properties that change only slowly in the x direction, 
the variables p and A that appear in the continuity and momentum equations are 
connected by an ‘equation of state’ of the implicit form 

9 = Y ( a ) ,  (3) 

where 9 = (p -pe)/Kp and a G A / A o .  At any location x, the phase velocity c of long 
area waves is governed by the inertia of the fluid and the compliance of the tube 
through the formula 

where co is the value at the neutral area, a = 1. 
In  passing, we note that when the wavelength-t’o-diameter ratio cannot be assumed 

as infinitely large, forms other than equation (3) must be used to account for effects 
due to axial tension, wall inertia and radial motion of the fluid. Such forms involve 
derivatives of a with respect to time (related to wall inertia) or distance (related to axial 
tension or bending) and give rise to wave speed dispersion not accounted for in (4). 

Normalized equations. We introduce the normalized variables 

( = x / L ,  7 G c$t /L ,  @ = u/c& %(a; ( )  = c/co(fl), 

where L is an appropriate characteristic length, and c$ is the value of co at  some 
reference location [*. Inserting these into (1) and ( 2 ) ,  and substituting for the term 
a ( p - p e ) / a x  by means of (3) and (4), we obtain 

and 

where Kif is the value of K p  at  (*. 

2.3. The tube law 

Figure 1 shows the curve 9 ( a )  as determined by static observations of transmural 
pressure difference versus volume on long lengths of thin-walled latex tubing of the 
type used in the experiments described in part 3. In  determining 9 ( a ) ,  care was taken 
to eliminate errors introduced a t  the end regions where the compliant tube was 
attached to rigid tubes. 

Also shown on figure 1 are several related functions later found to be useful. The 
curves shown are more or less typical of those for thin-walled compliant tubes, although 
in the range a 1 the curves are highly dependent upon the initial out-of-roundness 
of the tube. 
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FIGURE 1 .  Properties of commercial Penrose surgical drain tubing made of latex rubber (diameter, 
1.27 cm; nominal wall thickness, 0.032 cm; Young’s modulus co g 86 cm 
9-I ) .  The \Val1 thickness varied linearly, end to end, from 0.028 cm to 0.036 cm. The functions 
%‘(a), P (a )  and A ( a )  are determined from the experimental curve 9 ( a )  by means of (4), ( 5 7 )  
and (59). 

1.6 x lo7 dynes 

Positizte transmural pressure difference. When B > 0 the tube is inflated and essen- 
tially round. The pressure difference across the wall is supported by hoop tension 
and the appropriate stiffness constant is that for tension in the tube wall. 

A’egative transmural pressure difference. When B < 0, the tube is partially collapsed, 
in the successive shapes shown in figure 1. The pressure difference is supported pri- 
marily by the bending stiffness of the tube wall, which, for a linear elastic material, is 
of the form K ,  cc E I ,  where E is Young’s modulus; and I is the bending moment. 
For a slice of the tube, I = ( h / R 0 ) 3 / (  1 - v2), where h is the wall thickness, 22, is the radius 
corresponding to A,, and 1’ is Poisson’s ratio. 

Thesimilarityrange. In  therangeofclbelow about t (0.21 for aperfectlysymmetrical, 
elastic tube, as shown by Flaherty, Keller & Rubinow, 1972) the walls of the tube 
are in line cont’act, and t,wo parallel conduits are formed, the shapes of which are self- 
similar. Self-similarity arguments show that the tube law is then of the form LF = - at, 
a result confirmed by our own experiments. 

Efject of longitudinal tension. When the tube is under a longitudinal tension Tz, 
and there is a local curvature of order in the longitudinal plane, the quasi-static 
tube law no longer holds. Mechanically, the effect of TL is roughly equivalent to that 
due to a change in p ,  by an amount of order TL/Rz. 

Throughout this paper we assume that (TL/RL) < ( p  - p,,) thus rendering the tube 
law of equation (3) and figure 1 a good approximation. Similarly, we also ignore 
longitudinal bending stiffness. These assumptions, we note, may involve significant 
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errors in such cases as (a )  regions where pe changes rapidly with distance, (b)  in the 
neighbourhood of shock-like transitions (see $13)  and (c) near attachment points 
where the area is constrained to adjust in a short distance to match the area of a rigid 
end tube. As suggested earlier, the structural mechanics of the tube then enters the 
problem in a much more complex manner than through the simple description of 
equation (3). 

2.4. Analogues 

The governing laws, (6) and (7) ,  are similar to those of gas dynamics or free-surface 
flow, with the tube cross-sectional area corresponding to the gas density or the liquid 
depth, respectively. The tube law plays the role of an equation of state which, in the 
analogues, connects the pressure to  the density or depth. However, in the range 
a < 1, the nonlinearities brought in by the tube law are much more severe than those 
in the respective equations of state for gas dynamics or free-surface flow. 

I n  gas-dynamical flows, the term aP,/aC would arise from inflow or outflow from 
tributaries and from body forces; in the latter category only electromagnetic forces in 
plasmas would normally be significant. 

Free-surface flows offer perhaps a closer analogue, since the term i3Pe/a[ would 
represent the effects of a sloping bottom. 

Part 1. Linearized theory for small amplitudes 
3. Formulation of small-amplitude theory 

While most problems of interest in the range a < 1 exhibit considerable nonlinear 
behaviour, t,here are some in which the amplitudes are sufficiently small for a linearized 
theory to be of value. 

More importantly, however, the linearized theory is a highly useful preliminary to  
nonlinear calculations. It describes accurately the early stages of an evolving non- 
linear flow. It anticipates many features of the more complex nonlinear flow, and 
provides insights and interpretations difficult to extract from purely numerical cal- 
culations of nonlinear behaviour. 

3.1. Assumptions 

I n  part 1 of the paper we neglect altogether friction, longitudinal inhomogeneities in 
tube properties, and inflow from tributaries: thus C,, dKJdx, dAo/dx  and qL are all 
zero. Attention is thus focused on the flow and changes of area produced by the pres- 
surization function P,((, 7). 

3.2. The linearized equations 

We introduce the definitions 

@=@+?I, a = E + a ,  V = l + y ,  P = P + P ,  l+c+e, (8) 
where @, if, and refer to an undisturbed uniform state, and where v, a,, y ,  P and 
pe represent the dimensionless perturbations in velocity, area, etc. The constant 
reference wave speed co = c$ that  appears in ( 5 )  should now be taken as the value of 
5 corresponding to  the area ratio a. We also transform to a reference frame 5' which 
moves with the unperturbed speed 02, by means of the relationship 5' = 6 - @r. 

Examination of (3), (4), (6) and (7) shows that o, a, y ,  P and pe are all of the same 
order. This is evident physically because i t  is the perturbation pressure Pe that  pro- 
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duces the perturbations in velocity and area. We assume that all are small compared 
with unity. To the order of this approximation, the perturbation flow rate, made 
dimensionless with reference to cOAO, is equal to v. 

The foregoing are now introduced into (3), (4 ) ,  (6) and (7).  Neglecting all but first- 
order terms in the perturbation quantities, one obtains the linearized equations for 
the perturbation speed v and perturbation area a. 

Continuity : a,+vc = 0. (9) 

Momentum : ac + v, = - &. (10) 

Tube law: P = a/E. (11)  

a,,-aF5‘ = R,ET (12) 

and V7,-V2)5T = -p , , f , .  (13) 

A 

Cross-differentiation of (9) and (10) produces 

h 

Henceforth we shall drop the primes, writing 5 instead of c )  with the understanding 
that we are then observing the flow in a reference frame moving with the mean fluid 
speed @. 

The homogeneous forms of (12) and (13), with terms in pe absent, are seen to be the 
wave equation for plane waves. Their solutions have a well-known physical interpre- 
tation: waves of velocity and area propagate with unchanged strength at the dimen- 
sionless speed 5 1 relative to the fluid; furthermore, waves are generated only at the 
boundaries, do not interact with each other, and combine linearly. The terms e,55 
and - e,5r may be interpreted as sources of waves in the region between the boundaries. 

4. Solution by a linear method of characteristics 
The linearized equations derived above can be solved either by the use of Green’s 

functions (Morse & Ingard 1968) or by the linear method of characteristics. For 
continuity with later discussions in part 2 ,  the characteristics method will be used. 

From (9) and (lo), the ‘state characteristics’ defined by 

(dvlda),,, = T 1 - pe,&d7/da) 

(@/d7)9, p = _+ 1. 

(14) 

(15) 

apply along the ‘physical characteristics ’ defined by 

The latter represent the wave trajectories in (<,7) space. Here the symbol 9? de- 
notes the rightward- and 2’ the leftward-running wave path; they correspond 
respectively to the upper and lower signs in the two equations. 

The integrated forms of (14) can be added and subtracted to obtain expressions for 
the perturbation area and velocity: 

a = 1 v  2 (  0,w - V 0 , d  + m 0 , w  + a0.d + iP, - Pw); (16a) 

v = $ ~ ~ o , w + + o , ~ ~ + ~ ~ ~ o , w - ~ o , , ~ - ~ ~ ~ w + ~ , ~ ~  (16b) 
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FIGURE 2. Application of a linear pressure ramp to a long tube. (a )  Distributions of pe and af'Ja6. 
( b )  Zones in ([;7) space. ( c ) ,  (d )  Distributions of a ( [ ;  7 )  and 0 ( [ ; 7 )  for a constant ramp height. 
Numbers on curves are values of 7. 

where v, and a ,  represent values of v and a at 7 = 0 pertaining to the initial locations 
of the indicated physical characteristics. In  the several examples to which (16) are 
applied, it is assumed that v, and a, are everywhere zero. 

4.1. A time-varying linear ramp in pe 
Consider a linear ramp in pe([,7) of the form shown in figure 2(a ) ,  extending from 
[ = 0 to [ = 1 ,  and of time-varying amplitude ena(7). This is of practical interest as 
an approximation to the edge regions of pressurization cuffs applied to vessels such 
as veins or arteries. It also models a segment of a vessel subjected to longitudinal 
acceleration due to collision or impact. 

The integrands in (16) are non-zero only while the relevant characteristic curve 
passes through the ramp region. At any instant of time, e,E has a constant value, 
- em(,), throughout the ramp. The integrals are then easily evaluated and the solu- 
tion is conveniently represented in terms of a pressure impulse integral: 

n(z) = / 3 & ) d 7 .  (17) 

Table 1 presents the area, a((,  7 ) ,  and velocity, v(6,7) ,  for the various zones in (6, T )  

space identified in figure 2 ( b ) .  
A ramp constant in time. Now consider the case where a constant external pressure 

&,, is applied instantaneously. Equation (17)  gives IT@) = p & .  z. The solution is 
then very simple: for example, using table 1, a, = +p&(25- I), and v, = &&. 

Figures 2 ( c )  and 2 (d )  show how the profiles a([ )  and v(5) evolve at  successive times 7.  

In zone 1, which extends to a maximum 7 of 4, the area remains unchanged and the 
velocity depends only on time (true also for the general case, see table 1) .  Compression 



10 R. D. Kamm and A .  H .  Shapiro 

Zone 

1 
1R 
1L 
7 
8 
4 
5 
6 
2 
3 

TABLE 1. Solution for linear ramp of figure 2. n ( z )  Pem(7) d7. s,”- 

I I V 

0 1 

FIUURE 3. Rapid leftwards acceleration of a U-shaped vessel, giving rise to body force G,. 
The dashed lines show the vessel unfolded along 6. 

waves proceed downstream and rarefaction waves upstream. Both sets of waves 
increase the velocity. However, when coupled with the spatial distribution of E, the 
compression and rarefaction waves create an area bulge which appears to proceed in 
both directions from 5 = 1 and an area contraction which appears to proceed in both 
directions from 5 = 0. The physical behaviour is further clarified in connexion with 
figure 10. 

Two further observations of practical importance deserve mention. First, for 7 > 1, 
no further changes of area or velocity occur within the pressurized zone, 0 < ( < 1; 
that is, the tube then behaves like a rigid, tapered duct within which the perturbation 
velocity is constant with respect to both 5 and 7. Fluid is transferred through this 
segment of tube from the steadily lengthening colIapsed zone, 5 < 0, to the steadily 
lengthening inflated zone, 5 > 0. Second, a minimum area is formed at  E = 0; when 
friction and flow separation are considered, it is evident that this reduces the rate at 
which the pressurized portion of the tube can be emptied. 
Flow created by acceleration during impact. Consider a U-shaped segment of a long 

compliant tube (figure 3) that is rapidly brought to rest from an initial speed 6 along 
5. This approximates what happens during an impacting blow or a collision. 
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Zone 
1 
1R 
1L 
7 
8 
4 
5 
6 
2 
3 

V - 
W C O  

1 
0 
0 
Q 
4 
3 
!? 
0 
0 
0 

TABLE 2 

In  a reference frame moving with the tube, a d'Alembert force G,(r) acts along [. 
Referring to (5), it  is seen that G J r )  is equivalent to a distribution of pe exactly like 
that of figure 2 (a )  and that the solution of table 1 is applicable. 

Inasmuch as the wave speed of compliant tubes is quite low, it is likely that the 
total time period during which G, acts is small compared with the characteristic time 
AT = 1 for one wave passage over the distance A( = 1 .  Accordingly, we assume that 
the body force G,(r) may be represented as a delta function at  7 = 0. By equation (17), 
then, IT ( 2 )  is a step function which is zero for 7 < 0 and which, for r 2 0, has the value 

r11(2) = IT * = 1: (G,  L/C;) dr  = c/c,. 

Now, with this constant value for IT(z), the formulas in table 1 yield the results 
shown in table 2. 

Uniform increases of area and velocity propagate rightwards in the band 1, 5 ,  7; 
a uniform decrease of area and a uniform increase of velocity propagate leftwards 
in the band 1, 4, 8. In zone 1,  the velocity disturbances reinforce but the area distur- 
bances cancel. The net effects on a and v are zero in zones 2,  3 and 6. The rightwards 
and leftwards disturbances in bands 7 and 8 continue to propagate unchanged except 
as ultimately dissipated by friction and distorted by reflexions. 

4.2. A time-varying spatial step in 
By considering the limit of the solution for the linear ramp of figure 2 (a ) ,  as the ramp 
length L goes to zero, one obtains the solution for a spatial time-varying step in fk 
at ( = 0, shown in figure 4 (a).  Referring to figure 2 (b ) ,  the variables 5 and r become 
very large compared with unity as L 3 0. Zones 1, 4, 5, 6, 7 and 8 in effect shrink to 
infinitesimal size, leaving only zones lR, lL, 2 and 3, as in figure 4(b). 

Inspection of the definite integral of (17)) for the circumstances where 161 > 1 and 
T % 1, shows that the expressions in table 1 for zones 2 and 3 reduce to the limiting 

(18) forms 

Suppose, for instance, that the amplitude pm(r) of the step increases with time as 
shown in figure 5 (a), reaching the constant value Fzrn a t  the time r*. Then, according 
to (1  8), the area and velocity distributions at a time 7 > T* will be as shown in figure 
5 ( b ) ;  the curves are replicas of the &(r) curve of figure 5 (a) .  

v2 = v3 = a2 = -a3 = l#j (.-lSl). 
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0 E 

0 E 
FIGURE 4. A time-varying step in ?e at E = 0. (a)  Instantaneous 

distribution Pe,([; 7 ) .  (b )  Wave diagram. 

I (a  ) 

m 
0 7* 7 

FIGURE 5. (a) An S-ramp in Pe,(7), with maximum value $:m and rise time T*. 
( b )  Corresponding distributions of a( f ,  7 )  and v([; 7 ) .  

A constant step in fi,, instantaneously applied. Let T* + 0 in figure 5(a ) ,  so that 
figure 4 now refers to a constant increment p:m that is instantaneously applied in the 
region 5 c 0. Then figure 5 ( b )  takes the form of figure 6 (a) .  The latter, together with 
(18), reveals that the fluid states are respectively constant in zones 2 and 3 of figure 
4(b) .  Thus the lines t; = T may be identified as physical waves (W for rightwards, 
2’ for leftwards), generated by the step pulse of pressure, carrying signals the ampli- 
tudes of which are given by 

AaS = - Aa, = &m, (19) I Av, = Av, 

h 

APS = -AP9 

where AvS = v2 - vIS,  etc. After the W and 2 waves are generated, the velocity and 
pressure are continuous across the step, but the area is discontinuous, as seen in 
figure 6 (a).  
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4 a,,u ( a )  
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r---------t--- r----- 11 
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IR 
1L 

P,"m - 

FIGURE 6. (a )  Distributions of a ( 5 , ~ )  and v(g; T) for B step of constant amplitude, 
i.e. T* in figure 5 equal to 0. (b )  State diagram corresponding to (a). 

The changes produced by such a unit pulse are conveniently represented in graphic 
form on a ( v ,a )  'state plane', as in figure 616). 

In 9 8, a generalization of (19) is derived for the case where the step change in pe(g) 
is a t  a fixed location but the mean speed @ relative to the step is not negligible com- 
pared with unity. 

4.3.  A uniformly growing linear ramp 

Consider a tube, closed a t  g = 0, to which is applied a linear ramp of constant slope 
( - which proceeds outward from the origin at a constant rate (figure 7a). At 
time 7 ,  the leading edge of the ramp is at  g = V,  7 ,  where V,  is the dimensionless ramp 
speed. To meet the condition that v = 0 a t  5 = 0, an image ramp is applied in the 
region g < 0. 

The physical situation described may be established experimentally in a vertical 
apparatus in which the compliant tube, closed a t  the upper end, is surrounded by a 
chamber containing the same liquid. If the fluid level in the outer chamber is lowered 
a t  a constant rate, the distribution pe(t, 7 )  of figure 7 (a )  will be established. 

> V ,  7,  and has the constant values +e, and --fie,[ for 0 < 5 < V,  7 and - V,r < 6 < 0, respectively. For an arbitrary 
point in region e-f of figure 7 ( b ) ,  application of (16a, b )  produces 

( a )  V ,  < 1. The integrand of (16c) is zero for 

A 

a,, = vef = $Pe,5(2r2-r1-78). 

Geometry gives us the values of 71, 72, and r3 to yield 

Similarly, 

and 



14 R.  D. Kamm and A .  H .  Shapiro 

-if-  

FIGURE 7. A uniformly growing linear ramp, for V, < 1. (a) Applied pressure distribution. 
( b )  Wave diagram. (c) Area and velocity distributions for V, = 4. 

The spatial distributions of a and v are shown in figure 7 (c) for the case V ,  = 8. We 
note that there is no area throat near the downstream end of the pressurized region, 
such as appeared in figure 2. As contrasted with the latter, the tube of figure 7 empties 
first at the upstream end rather than at the downstream end, in a sort of milking 
action, which indeed this moving pressure ramp simulates. 

( b )  V ,  > 1. Figure 8 shows results similarly obtained for the case V ,  > 1, where the 
moving ramp outruns the pressure waves. The corresponding formulas are : 

Perhaps surprisingly, the two cases V ,  c 1 and V ,  > 1 produce quite similar results. 
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FIGURE 8. Similar to figure 7 ,  but for V, > 1. (a)  Wave diagram. 
(b )  Area and velocity distributions for V, = 2. 

4.4. A rectangular ‘milking wave’ of constant pressure 
Figure 9 ( a )  shows a uniformly widening rectangular distribution of constant applied 
pressure, p:, the leading edge of which moves with the dimensionless speed V,. The 
effect of a closed end is represented by means of the image distribution for 5 < 0. 

To evaluate the integral of (16c) ,  we first define a new variable, 7 = F7T 5; the 
upper sign applies in the region 5 > 0 and the lower sign in the region 5 < 0. Since 7 
defines the trajectories of the progressing pressure fronts, pe is a function of 7 alone 
and the integrand of (16c) can be written as 

We can also replace d7B,y in the integral using the expressions 

Combining these in the integration of (16c) produces the results 

where A E  is the pressure jump across the discontinuity along the appropriate charac- 
teristic curve. 
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FIUUFLE 9. A rectangular ‘ milking wave’ of constant pressure applied to a tube with closed end. 
(a) The distribution of applied pressure. The leading edges of the pressurized regions move on 
trajectories C; = K7. (b)  Distributions of area and velocity for V, = &. (c )  Distributions of area 
and velocity for V, = 2. 

(a) V ,  < 1. These integrals yield the solutions given below for area and velocity in 
the regions identified in figure 7 (b):  

a,, = Uef  = P,* * - v , .  
1 - V,“’ 

U f g  = 0. e . 
l+V,’ 

afg = -- 

Area and velocity distributions for V ,  < 1 are shown in figure 9(b ) .  Behind the 
leading edge of the zone of applied pressure, the fluid is motionless, and the area 
is uniformly reduced. Ahead of the leading edge, and up to the trajectory f ;  = T 

of the first wavelet, the fluid is accelerated to uniform speed and the area is 
uniformly increased. As the speed of the pressure front approaches the wave 
speed, the width of the region ahead of the leading edge diminishes; the corres- 
ponding amplitudes of a and u become large. We note that the linearized solution 
is not valid as V ,  -+ 1, so that the formulas are then only indicative of general 
behaviour. 
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(b )  V ,  > 1. Using the same method as above and referring now to the regions iden- 
tified in figure 8 (a), the area and velocity are given by 

P: * Vef  = P,*- v , .  aef = - v,"- 1' v,"- 1' 

(24b) 
P,* 

afg = -mr; vfo = 0. 

Typical area and velocity distributions for V ,  > 1 are shown in figure 9 (c). Again, 
both a and v tend to infinity at the forward end as V ,  -+ 1. The two cases, V ,  < 1 and 
V,  > 1, exhibit no remarkable differences. 

5. Generation and transmission of waves 
Waves may be generated in the usual way a t  the boundaries, for example by the 

injection of fluid, by the motion of a piston, by opening a valve to a region of different 
pressure, or by reflexion of arriving waves. Here, however, we consider the two ques- 
tions of (a )  wave generation remote from boundaries, and ( b )  the transmission and 
reflexion of waves due to spatial gradients of external pressure. 

A continuously variableE(6, T )  may be approximated by piecewise constant intervals 
of e, with small discrete steps in occurring a t  particular intervals A( and AT. Owing 
to the linearity of the equations, the solution for the given E((, T )  may be obtained by 
summing the contributions to a and v produced by all the steps. This approach is more 
than a basis for numerical computations. It also yields illuminating physical insights. 

5.1. Wave generation 

Consider what happens when e(() changes instantaneously, say, by an elevation of the 
external pressure. The immediate consequence, before any time elapses, is an accom- 
panying change in the internal pressure of precisely the same amount; however, neither 
a ( [ )  nor v( ( )  is at first altered. If the applied e(() is uniform with c, so is the change in 
the internal pressure; hence no pressure gradient is created, no force acts to accelerate 
the fluid, and neither the velocity nor area are affected. But if the applied &() is non- 
uniform in 6, sois the change in internal pressure; now the gradient of the latter produces 
fluid acceleration, with consequent effects on the velocity and area distributions. 

From this physical point of view the basic mechanism of wave generation (away from 
the boundaries) is the term Pe,57, that is, a temporal variation of 8 that is spatially 
non-uniform. The unit step of wave generation is evidently the instantaneous pulse 
shown in figures 4 and 6 (a) and described by the formulas in (19). 

5.2. Wave transmission and rejexion 

Next consider a wave previously generated that arrives at  a location where there is 
a time-invariant spatial step in e. Since the term fie,l7 is zero, (13) reduces to the 
homogeneous wave equation. Consequently the velocity wave continues through the 
step with unaltered strength, and with no reflexions. 

In  (12), on the other hand, the term fie,55 is not only non-zero, but is of the form of 
a delta function at  the step. What this signifies physically is revealed by integrating 
(10) with respect to ( across the step a t  constant time. Since A[ -+ 0, the term in 
av/ar vanishes, with the result that Aa = - Afi,. This has a simple meaning: since the 
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internal pressure is continuous across the step, the area must decrease discontinuously 
by an amount equal to the step increase in external pressure e. 

In the static case, with the same distribution pe((), the area change a t  the step 
would be the same, namely, Aa = - A E .  By the principle of superposition of solutions, 
therefore, a wavelet passing through the region of a step is in effect governed by the 
homogeneous wave equation and experiences neither a change in amplitude qor a 
reflexion when crossing the step. 

Thus the conclusion is that purely spatial gradients in c do not generate waves 
nor do they modify the strength of transmitted waves or produce wave reflexions. 

In  $ 9  wave transmission and reflexion at a step E( t ) ,  are considered when the 
mean fluid speed is not small compared with the wave speed; there it is shown that 
the foregoing results still apply unless second-order terms in the perturbation area 
and velocity are considered. 

5.3. An example: the linear ramp of constant amplitude 
A reconsideration of the problem of the instantaneously applied linear ramp of 
(figure 2a with constant Fern) nicely illustrates these physical concepts and clarifies 
the mathematical solution obtained previously. 

Figure 10 shows the right-hand end of the ramp, which is approximated by a stair- 
case of ten equal steps, each of strength 2 units. When the stairway is suddenly applied, 
equations (19) show that each step generates a right-moving wave of strength + 1, 
across which Av = Aa = + 1, and a left-moving wave of strength - 1,  across which 
- Av = Aa = - 1 .  By adding up the contributions of all waves crossed by a particle 
(which moves essentially vertically in the 6, r diagram), one may enter in each zone 
a pair of numbers, the upper one representing a, the lower one representing v. Across 
each vertical line representing a step in E, v and the internal pressure are continuous, 
but a jumps by 2 units. 

Figure 10 clearly illustrates how the motion is created by the rightwards family of 
compression waves and the leftwards family of rarefaction waves generated at  T = 0. 
These propagate with unchanged strength and are transmitted across the steps in fik 
without modification or reflexion. The two families of waves are generated uniformly 
along the interval 0 < 6 < 1. No waves are generated for 6 < 0 and 6 > 0. In  the 
middle of the ramp, at 5 = 0.5, the two families are equally present; hence their effects 
on area cancel each other, while their effects on velocity reinforce each other. Near the 
right-hand end of the ramp, the compression waves predominate, hence both a and v 
are positive. Near the left-hand end of the ramp the rarefaction waves predominate, 
hence v is positive, but a is negative. 

At large times, r > 1, both families of waves have entirely left the ramp region, 
leaving behind a static situation: the velocity and pressure are constant and the 
area varies linearly with distance because of the linear change in E. Outside of the 
ramp but within either the rightward or leftward running band of waves, v and a 
change linearly with both distance and time because only one propagating wave family 
is present, a family originally generated uniformly with distance at  r = 0. 

Taken to the limit of many small steps, figure 10 shows the phenomena which 
physically establish the solution represented in figures 2 (c) and (d ) .  These graphs of 
course agree with the numerical values in figure 10, having in mind the discrete 
character of the latter. 
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5.4. Localized app?ication of pressure 
Consider now a constant pressure p: applied instantaneously over the Jinite interval 
- 0.5 < Lj < 0.5. Figure 11 exhibits the solution, using the rules of calculakion given 
in (19) 

For reasons of symmetry, this solution also applies to a tube with a closed end at 
= 0 that lies in the region E > 0. The wavelet 4-8 would then be seen as the reflexion 

at the closed end of the wavelet 1-4. 
After a period of interaction the four wavelets generated at  Lj = i- 0.5 pass com- 

pletely out of the pressurized zone. For r > 1, the pressurized zone contains stationary 
fluid in a reduced area; all other effects of the pressure application are confined to the 
uniform corridors 2 and 3 which propagate with speeds dE/dr = 1,  respectively. 

6. Distributions 0: applied pressure yielding the homogeneous wave 
equation 

Although general methods of solution for arbitrary E ( ~ , T ) ,  using the method of 
characteristics, have been presented, the solutions for a considerable variety of applied 
pressure distributions can be obtained more easily. These are for cases where (12) or 
(13) reduces to the homogeneous plane wave equation. The solutions may the1 be 
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FIGURE 11. A hat-shaped pressure application of constant strength. (a )  Distribution of &([), 
constant in time. (b )  Wave diagram. Upper numbers: 2a/P,*; lower numbers: 2w/P:. (c )  State 
diagram. 

written down quickly and in simple form. Fortunately, the distributions t( l ,  7 )  

falling within this seemingly special class are in fact quite broad in scope, and are of 
considerable practical interest. 

6.1. The special distributions E(l ,  7) 
The distributions E(& 7 )  which lead (either directly or by a transformation of variables) 
to the homogeneous plane wave equation are those for which fh,[[ either vanishes or 
is a function of 6 or 7 only; together with those for which Pe,[, either vanishes or is a 
function of 5 or 7 only. All such possible forms are contained within the additive 
function 

(25) 
h E2 < = To(7) + c a  Ti(7) t 5. Tz(7) -k Eo(c) $. 7 .  si((). 

Direct substitution verifies that the solutions of (9), (lo), (12) and (13) are then 
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where the superscripts in parentheses indicate integration with respect to the respec- 
tive arguments either once, signified by ( )(I), or twice, signified by ( )(2); e.g. 

Initial conditions. Let the distributions of area and velocity a t  7 = 0 be given by 
ao(fl) -= a(& 0 )  and vo(() E v(5,O). Then the functions f and g in ( 2 6 )  and ( 2 7 )  are given 

f (E  - 7 )  = 4 - 7 )  + vo(E - 7 )  + EO(5 - 7) - Ep)(E- 7)] (28) 
by 

and 9(E+7) = B[ao(5+7) -vo(E+7) +E0(5+7)+81')(5+7)]. (29) 

6.2.  Collapse from a uniform state 

We shall consider here cases in which the initial state is free of motion and uniform in 
area, and where positive external pressures are applied in order to empty the tube. 

For this case the initial conditions are ao(5) = 0 and vo(E) = 0. Using these, ( 2 6 ) ,  
(27) ,  ( 2 8 )  and (29) may be brought into the forms: 

v = *[Eo(5 - 7 )  - Eo(5 + 7 ) ]  

+ Epg)  - *[Ep([ - 7) + Ep(c + 7)] 
- Ti1) (7)  - 6. Ti1) (7) .  (31) 

We now examine how the mode of emptying is determined by the several individual 
components of E(E,T) appearing in ( 2 5 ) .  

(a) The function T0(7). This does not appear a t  all in the solution, reflecting a con- 
clusion previously deduced in § 5.1 by physical argument: a temporal variation in 8 
has no effect on a or v if i t  is spatially uniform. 

( b )  The function Tl(r). In this case 8 is linear in 6, with slope that varies arbitrarily 
with 7.  Equations (30) and (31) give a = 0 and v = - T'I1)(7). Thus the area is unaltered 
and the velocity is independent of <. This is the result already obtained for the linear 
ramp of figure 2 (see table 2 ) ;  here i t  is applicable only to zone 1 because of waves 
generated at the corners of the ramp. 

( c )  The function T2(r).  Now E is parabolic in g, with its amplitude an arbitrary 
function of time, Apart from a deliberate pressurization, such a variation in pe would 
occur as the result of angular accelerations resulting, for instance, from an automobile 
collision. 

From (30) and (31), a = Ti2)(7) and v = - t . T $ l ) ( ~ ) .  Thus, for T2(7) < 0,  the tube 
collapses uniformly, and the velocity varies linearly with distance. 

More particularly, suppose a constant parabolic distribution is applied suddenly : 
pe = ( 1  - E 2 )  T2(7), where T2(7) = 0 for 7 < 0;  and T2(7) = T,* for 7 > 0. Then 
a = - T,* .r2 (uniform, but, increasingly rapid collapse), and v = 2 T z .  67 (velocity 
increasing linearly with both 6 and 7 ) .  
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FIGURE 12. Graphical solution for a step change in the slope of Eo(E). (a) Distribution E,(E) applied 
at 7 = 0. ( b ) ,  ( c )  The distributions of a ( [ ;  7 )  and v(5; 7 ) ,  shown by solid lines, are found by algebraic 
additions of the components of (30) and (31), shown by the dashed lines. 

( d )  T h e  function So(<). This represents an arbitrary distribution of applied pressure 
with distance, instant,aneously applied and constant in time. 

(i) Graphical solution. As may be seen from the first lines of (30) and (31)) the 
solutions for a(<, r )  and w(<, r )  are easily obtained graphically by additions and sub- 
tractions of several terms, each representing some multiple of the function 
translated along < by an appropriate amount: 0, +r ,  or -7. The procedure is illus- 
trat,ed in figure 12 for a local discontinuity in slope i3&i3(. The resulting solutions agree 
with those of figures 2(c) and (d )  in the neighbourhood of < = 1, up to r = 8, beyond 
which figures 2 and 12 can no longer be compared. 

The graphical solutions for a(<) 7) and v(<, r ) ,  as given by the first lines of (30) and 
(31), are not limited in applicability to particular ranges of < and r ,  evenwhen there 
are singularities in E,". One may quickly verify that the graphical solution easily 
and correctly produces the full results of figures 2, 4 and 6 when the applied pressure 
distributions are time-invariant. To clarify the point: the results are not restricted, 
for example, to zone 1 of figure 2(b) .  

(ii) Parabobic distribution of zo(<). Consider the function So(<) = ,p:m[l - [- +b<2]. 
Then (30)  and (31) yield a / p &  = - &br2 and v/p:m = (1  + be) r. The linear term re- 
covers the results previously obtained for the linear distribution of figure 2 and for 
the function Tl(r) = constant = - P&. The quadratic term recovers the results for 
T2(r) = constant = - bi?,*,. However, because of the way in which the initial condi- 
tions were used to obtain (28) and (29), these specific algebraic results are limited to 
a triangular region like zone 1 of figure 2, defined by thewavelet trajectories originating 
a t  the edges of the zone in which the prescribed SO(<) is applicable. We repeat, however, 
that  the graphical solution is not so limited. 

A 
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FIQURE 13. Asymptotic pressure ramp, Eo(E) = Pzm/[l + k,exp (kzE)]. (a)  Distribution of applied 
pressure. ( b ) ,  (c )  Distributions of a ( k , [ ;  kZ7)  and v(k,E; k Z 7 ) ,  for k ,  = 1. Numbers on curves repre- 
sent values of 2kz7. 

(iii) An asymptotic ramp in Zo(() (Jigure 13a) .  The asymptotic pressure ramp, 
Zo(lJ = P,*,/[l +k,exp ( k 2 ( ) ] ,  is of interest because it removes the physically 
impracticable corners of the linear ramp of figure 2. The solution, according to (30) 
and (31), is given by 

Typical distributions of alp,*, and v/Pzm are shown in figures 13(b) and (c) .  These 
are generally similar to the results for the linear ramp of pressurization (figures 2c 
and d ) ,  but the effects of discontinuities in slope are no longer present. 

When k, -+ 00, the asymptotic ramp approaches as a limit the step of figure 4. It 
may then be verified that the formulas above pass over in the limit to the results of 
figures 4 ( b )  and 6 ( a )  and of equation (19). 

(iv) A rectangular distribution applied to a tube with a closed end. Using the method 
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FIGURE 14. Triangular pressure ramp applied to a vessel with closed end. (a) Distribution of 
applied pressure. ( b ) ,  ( c )  Distributions of area and velocity: ---. 7 = 0.5; ---, 7 = 1.0; -, 
7 = 2.0. 

of pressure pulses, we have already given the solution for a rectangular, constant 
distribution of pe, applied suddenly to  a vessel with a closed end (figure 1 1 ) .  The 
result is of interest because i t  approximates the simplest way of pressurizing a limb. 
Note that the emptying begins at  the downstream edge of the pressurized region; the 
high velocity there, associated with a reduced area that is followed by an area increase, 
tends in practice to produce head losses that would reduce the rate of emptying. 

(v) A triangular distribution (Jigure 14) .  The flow-reducing effect just mentioned 
may be substantially averted by employing a graded application of pressure, decreas- 
ing from upstream to downstream. Whereas in figure 11  the flow is accelerated mainly 
by upstream-running rarefaction waves which decrease the area, in figure 14 the 
flow is accelerated in addition by downstream-running waves which increase the area 
at the point of highest velocity. 

This solution, in the region 6 > 0, applies also to gravity drainage without external 
pressurization. As given, i t  refers to a tube, initially uniform in the horizontal position 
and closed a t  one end, which is suddenly tilted to some fixed angle to the horizontal. 
However, if the tube is initially tilted, with both ends closed, and the lower end is 
suddenly opened, the solution given still applies provided that the perturbations in 
area are deemed to  be superposed upon the linear area distribution associated with 
the initial static state. 

(vi) A ramp at the edge of a rectangular distribution. Any practical attempt to apply 
uniform pressure to  a part of a limb will actually produce a ramp at  the edge of the 
pressurized region. Figure 1 5  shows a simple distribution modelling this effect. It is 
seen that collapse first occurs a t  the edge of the constant-pressure region, a t  a location 
of high velocity. This localized constriction, as in case (iv), would in practice induce 
losses that in turn would reduce the rate of emptying. 

( e )  The function Sl(fJ. This represents pressurizations of unchanging spatiaI form, 
the amplitudes of which grow uniformly in time. Since external pressures cannot be 
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FIQURE 15. Rectangular applied pressure with linear edge region. (a) Distribution of applied 
pressure, symmetrical about 6 = 0. ( b ) ,  (c)  Distributions of area and velocity: ---, 7 = 0.5; 

,7 = 1.0; ~ , 7  = 2.0. _ _ _  

applied instantaneously, the solutions now discussed refer to the early stages of any 
rapid pressurization, as well as to a deliberate linear rise. 

The second lines of (30) and (31) show that the graphical method of solution is 
convenient for these cases. 

Figure 16 shows the solution for a rectangular distribution of applied pressure, as 
in figure 11, but with the amplitude p: growing linearly in time. I n  addition to the 
graphical method, this problem is accessible to the concept of pressure pulses. Over 
the range - 0.5 < [ < 0.5, small increments Spe are applied uniformly a t  each interval 
of time ST. Thus rightward- and leftward-moving wavelets are uniformly shed from 
the lines 5 = f 0.5. The effects of these on a ( 5 , ~ )  and V ( ( , T )  may be summed a t  any 
point in the [ , T  field. 

As illustrated in figure 16, the points of maximum velocity occur first at the edges 
of the pressurized region. For 7 > 1 ,  the regions of maximum velocity spread outwards. 
Within the compression zone the area continues to decrease as increases, while 
inflation waves spread outwards beyond the inflation zone. 

6.3. Refilling of a vessel 
I n  most medical applications of vessel emptying, i t  is necessary to  refill the vessel 
periodically. If one attempts cardiac assist by means of counter-pulsation on the 
arterial volume of the legs, for instance, effective operation requires that the arteries 
substantially refill within a fraction of one heartbeat. Thus we are concerned with 
the details of how a partially emptied vessel refills. 

Initial condition. We shall assume that,, emptying having ended, the situation a t  
r = 0 is one without motion but with some distribution of a(<, 7 )  from an appropriate 
base state. 
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FIGURE 16. A rectangular pressure distribution as in figure 11, but with the amplitude pe growing 
uniformly in time. ---, T = 0.5; ---, T = 1.0; -, T = 1.5. 

Solution. One method is to suppose that, for r < 0, there exists the pressurization 
function a,(<) which maintains the static configuration before refilling begins. To 
represent the release of external pressure, we then add the function - a,(<) at T = 0. 
This procedure is easily effected by means of the graphical method. 

Alternatively, we note that a0([) = a([,  0) is known, and that v&) = v((, 0) = 0. 
Moreover, e(<, T )  = 0 during refilling, hence a and v obey the wave equation. Applying 
these considerations to the determination off([--7) and g ( t - 7 )  in (26) and (27) we 
obtain the solution to the refilling problem in the form 

a(<, 7 )  = *a,(< - 7 )  + &a,(< + 71, 
v(5,7) = *a,([ - 7 )  - *a,(< + 7 ) .  

(32) 

(33) 

These may also be solved graphically by suitable translations and graphical additions 
of the function a,o([). 

A more physical interpretation of the solution is that the two terms in each of (32) 
and (33) represent two families of area waves accompanied by corresponding velocity 
and pressure signals. The W waves (rightwards) propagate along lines < - T = constant; 
the 2 waves (leftwards) along lines < + T  = constant. Each wavelet carries a certain 
signal strength, determined by the change in properties across the wave. Across the 
L%’ wave, in the direction <+T = constant, (32) and (33) give 

sa, = sv, = SP,. 
SimilarIy, across an 2’ wave, in the direction < - T = constant, 

(34) 

sa, = -svy = spy. (35) 

These provide simple and convenient rules of calculation. 
Refilling of a step change in area. Figure 17 shows the solution to this case, based 

upon (34) and (35). The right-hand end of the vessel is assumed closed. The rightward 
compression wave 9 and leftward rarefaction wave 2’ remove the initial discon- 
tinuity in area, and are of such respective strengths as to create continuity of pressure, 
area and velocity between fields 3 and 4. Field 3 is a corridor of area decrease and 
velocity increase, which in effect supplies from the tubing at  the left the fluid that 
ultimately refills the tube in field 5. 
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FIGURE 17. Refilling of a step change in area. (a)  Area distribution at  7 = 0. 
( b )  Wave diagram. (c)  State diagram. 

7. Solutions with prescribed area variation 

and then to determine the applied pressure distribution E([ ,7)  needed to effect it. 
Often i t  is of greater practical value to prescribe the desired area variation a([ ,  7 )  

7.1. Method of solution 

We suppose a([ ,7)  to be given. Integration of (9) with respect to [, while holding 7 

constant, then produces 

where 4 ( 7 )  is arbitrary. Similarly, integration of (10) with respect to [, again while 
holding 7 constant, and with awl& calculated from (36), yields 

'E = -ja7(697)dc+01(7), (36) 

E = / jar,d5 d[-jagd5-c0;(7)+02(7), (37) 

where the function 0,(7) is also arbitrary but immaterial. 

7.2. Examples 

We consider examples of tube emptying from an initial state of uniform area and 
zero velocity, i.e. a([,O) = 0 = v([,O). 

(i) Uniform collapse. If we set a = a(7), and arbitrarily set i3)1(7) = 0, then equation 
(36) gives the velocity as v = -[a'(7), with the further requirement that a'(0) = 0; 
and equation (37) gives the applied pressure as = 4[2a"(7). These results are seen 
to correspond with the function T2(7) of (25),  and with the solutions for a and v given 
in 9 6.2 (G) .  

(ii) A uniformly translating wave of collapse. Let the area variation be described by 
a = a([ - -57 ) ,  where V, is the dimensionless speed with which a given area profile 
propagates uniformly in the direction. Then (36) and (37) yield 

and 
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FIGURE 18. An asymptotic area ramp moving with dimensionless speed v,, 
with the corresponding curves for velocity and applied pressure. 

Omitting the effects of O,(T), which have been determined already from (25) and seq., 
and discussed specifically in $6.2  (b), the interesting result here is that the sign of 
the external pressure depends upon the dimensionless speed V ,  of the area wave, 
relative to unity. Thus, counter-intuitively, a wave of area reduction travelling along 
+ ( requires a negative applied pressure if V ,  > 1.  

One interpretation of this result derives from a consideration of the steady flow 
that is perceived in a co-ordinate frame travelling with the wave, in which the fluid 
moves from right to left. When the flow is subcritical (V, < 1) an area decrease in the 
direction of flow requires an increase of external pressure, while the opposite is true 
at supercritical speed (V, > 1);  this finding has previously been established for steady 
flow (Shapiro 1977b). 

Consider the specific case (figure 18) of an asymptotic ramp of area reduction of the 
form a = - amax( I + k, exp [k, C])-l, where t; 5 E -  V,T, travelling with the speed V,. 
The solutions for the area and applied pressure distributions may be expressed as 

and are displayed in figure 18. 

(37) leads to 

and 

From the condition that a([ ,  0) = 0, it is required that T(0)  = 0. And, from the con- 
dition that v(5,O) = 0, the first expression above may be brought into the form 

(iii) Area variation of the form T(7) .Z(5) .  Introduction of this form into (36) and 

= - ~ 7 ~ )  .I ~ ( 5 )  d(+ e(7) 
8 = T”(7) .  J J E(() d5d5 - T(7) .  Z(5) - 50’(7). 

2, = e(7) - B ( O )  .T’(T)/T’(O), 

which shows that with this specified area variation the velocity is independent of 
distance. This is a powerful solution, considering the generality of the assumed area 
variation. 

8. Wave generation in a moving fluid 
The concept of unit wave generation for an instantaneous step in pe over a limited 

range of 5 was developed previously for the case where the step is spatially fixed in a 
reference frame moving with the mean fluid speed [see figures 4, 6(a)  and (b ) ,  and 
equation (19)]. Consequently, the results are applicable to a stationary step only if 
u, or, more strictly, S = u/c ,  is small. 
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Consider now a stationary time-varying step with external pressures so large that 
the dimensionless speed, S ,  becomes substantial. So that linearized concepts may be 
used, is broken up into small steps, each of which is considered separately. However, 
since S need not now be of perturbation order, we must determine how equations 
(19) .are modified for finite values of S. The analysis, we shall see, offers physical 
insights into certain aspects of nonlinear behaviour. 

8.1. The case S .c 1 (jigure 19) 

Consider a region of sub-critical flow (S < 1 )  with uniform properties, A ,  u, p and c 
and with an external pressure p,. At the time t*, the external pressure in the region 
x .c x* is instantaneously raised by the amount Spy). This generates the wavelets 9 
and 9, propagating at the speeds u i- c. When these wavelets pass over a fluid particle, 
they produce the changes SA,, ha, etc. shown in the diagram for the several angular 
fields of constant properties. 

Assuming all changes to be of small order, and neglecting second-order terms, the 
changes across the wavelets W and 9 may be expressed respectively as 

&pB = PC~U, ,  &A,/A = 8Ua/C; (38) 

8p, = -~c&u,, &APIA = - SU,/C. (39) 

Corresponding to the jump Spit) a t  the location x* are jumps in the fluid properties. 
Across the jump, the space derivatives in the equations of continuity and momentum 
overwhelm the time derivatives, hence the flow may be treated locally as quasi-steady. 
Accordingly, the volume flows are equal on the two sides; 

( A  + SAP) (U + &up) = ( A  + 6A a) (u + 6%) 

( p  + 8p,) + &p(u + 6u,)2 = ( p  + a p p  + Sp,) + &p(u + Su,)2. 

and, in the absence of dissipative losses, Bernoulli’s equation is applicable: 

Retaining only first-order terms, and combining these expressions with equations 
(38) and (39)) we manipulate the equations into the forms 

Limiting case, S + 0. The formulas go to the limits previously derived in (19). The 
absolute strengths of the 93’ and 9 waves are equal, and there is a discontinuity in 
A ,  but not in u or p ,  at the location x*. 

Asymmetries when S + 0. When S is not zero, the absolute strengths of the W 
and $P waves differ, and at  the location x* the jump SpLt) creates discontinuities in all 
properties: A ,  u and p .  When 8 p f )  is positive, in the sense of figure 19, the W wave is 
compressive and the 2’ wave expansive, but the former is weaker than the latter. 

Entirely apart from those nonlinearities associated with changes in the values of 
A and c, it  is evident from the resuIts given here that finite amplitudes of will 
produce asymmetrical distortions of the solutions of figures 2, 4, 5, 6, etc. 
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FIGURE 19. Pressure pulses generated by the application of external pressure Spit), 
for subcritical flow, S < 1. Dashed lines represent particle trajectories. 

If 8pit) occurs in the region x > x*, then the signs of (40) and (41) are reversed. 
If the flow is in the negative x direction, (40) and (41) remain correct provided that S 
is substituted as a negative number. 

8.2. The case S > 1 (figure 20) 

The formulation of the problem now differs from that of figure 19 in that a fluid particle 
enters the 9 wave after first crossing the quasi-steady discontinuity at  x*. Writing 
the appropriate wavelet equations for W and 9, and the quasi-steady equations 
across x*, as was done for S < 1, one finds, surprisingly, the same result: that is, (40) 
and (41) apply to this case as well. 

At supercritical speeds, however, we see that a positive &pit) produces compressive 
waves in both directions. 

When 8 -+ m, the generated wavelets become vanishingly small in strength. 

8.3. The limit as S -+ 1 

The right-hand side of (40) approaches the value as S goes to unity. Thus, for in- 
stance, 8p9 + @pit’. 

Inspection of (41) seems to suggest that the 2’ wave becomes infinitely strong as 
S -+ 1.  This is not true, as another consideration comes into play. In steady flow, it 
has been shown (Shapiro 1977b) that 

dS2 ape a.9’” 
(l--S2)-=A-; &= 3 + -  

S= P C 2  8” 
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FIGURE 20. Similar to figure 19, but for supercritical flow, S > 1. 

Inspection of this formula reveals the important consequence that, when 

,ddpe/dx > 0,  

the solution cannot be continued beyond S = 1. Thus, increasing the value of p ,  
ultimately produces ' choking ', analogous to gas-dynamic choking in convergent- 
divergent nozzles. I n  the present context, this means that, if &&pit) < 0, the allow- 
able value of --&&p,kt) goes to zero as S -+ 1 [note that dpe of (42) corresponds to 
-&pit)]. I n  the neighbourhood S g 1, the solution of (42) for the maximum possible 
value of &pit) is of the limiting form 

Therefore, as S + 1, (41) yields maximum values 

Accordingly, the strength of the 9 wave remains bounded as S + 1, 

9. Wave transmission and reflexion in a moving fluid 
9.1. Intent and assumptions of the analysis 

Consider a tube with non-uniform rest area A,(x),  non-uniform stiffness K,(x), on 
which a non-uniform external pressure pe(x)  is acting. Let us suppose that wavelets 
have been generated, either at the boundaries, or away from the boundaries by means 
of steps &pit). The non-uniformities will cause changes in the amplitude of the wavelet 
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FIUURE 2i .  Wavelet incident upon a discontinuity in A and c. 
(a) Subcritical flow, S < 1. (b)  Supercritical flow, S > 1. 

as it propagates, and will also cause waves travelling in the opposite direction (partial 
reflexions) to appear. 

The nature of these events, the changes in the transmitted wave and the generation 
of reflected waves, will now be established in a manner that is useful for gaining 
physical insights. We suppose that the non-uniformities are lumped into steps, be- 
tween which the values A,, K p  and p ,  are assumed uniform. In  this view we focus 
attention on what happens when a wavelet arrives a t  a junction where there are step 
changes in A,, K p  and pe .  Since we assume the incident wavelet to be of small ampli- 
tude, all second-order effects connected with it are ignored. 

9.2. AJinite discontinuity in c and A 

First we consider the case where a small-amplitude wavelet is incident upon a junction 
at which the step changes in A,, K p  and pe  are arbitrary and of finite size (figure 21). 
Insofar as the fluid-mechanical equations are concerned, the steps in A,, K ,  and pe 
are important only as they affect the local values of c and A. 

The case S < 1. In  figure 21 (a ) ,  we suppose that there exists a discontinuity at  x* 
such that, initially, the properties for z < x* are: p l ,  ul, A,  and c,; and, for x > x*: 
p , ,  u,, A ,  and c,. When incident wavelet I (which changes the fluid state from 1 to 3) 
reaches the discontinuity, it is in part transmitted as wavelet T (which changes the 
fluid state from 2 to 5 )  and i t  is in part reflected as wavelet R (which changes the fluid 
state from 3 to 4). 

Employing the small-amplitude formulas for wavelets, and ignoring quadratic 
terms, we may write the dynamical and continuity equations for the three wavelets as 

u3-  u1 = apl/pc,, A ,  = A,apl/Pc!; 

u4-u3 = -ap,/pc,, A4-A3 = A,aPR/PC;; 

u5-u2 = 6pT/pc,, A 5 - A ,  = A',8pT/p~i .  
As in 9 8, the flow across the discontinuity is treated as quasi-steady by means of 

the equation of continuity and Bernoulli's theorem: 

AlUl = A,% p1+ &put = P2 + 4pu;; 

A4u4 = A5u5, p4+ = p 5  + *pug. 
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Combination and algebraic manipulation of all the foregoing yields the following 
transmission and reflexion ratios : 

&=- 1 +s, 
&PI j-s,. (44) 

In these we see the strong role played by the ratio of the two acoustic impedances 
pc/A. Suppose, for instance, that S = 0: then, if c2/A2 > cl /A, ,  the transmitted 
wavelet is stronger (in pressure amplitude) than the incident wavelet, and the re- 
flected wavelet is of the same sign as the incident wavelet; if, on the other hand, 
c,/A, > c2/A2,  the transmitted wavelet is weaker and the reflected wavelet is of oppo- 
site sense. 

Unfortunately, the role of the speed index S cannot be simply stated from these 
results. 

The cases > 1 .  The wave diagram is now as in figure 21 ( b ) ,  the main difference being 
that the reflected wavelet R propagates in the positive x direction. In  this case a 
fluid particle crosses the junction, from state 3 to 4, before its state is changed from 
4 to 5 as it crosses wavelet R. 

Following the same procedure as for S < 1, the results are obtained as 

and 

9.3. The limit of a small discontinuity 

Now suppose that the changes from state 1 to state 2 across the junction J are very 
small. Accordingly, we write A ,  = A ,  A ,  = A+SA,; c1 = c, c2 = c+Sc,;  and 8, = 8. 

The case S < 1. Inserting the above vaIues into (43) and (44), expanding in powers 
of SA,/A and Sc,/c, and retaining only first-order terms, we get 

and 

1-S SAJ l + 3 S  Scj  +-- SPpT-SPI - - -- - 
SPI 2(1+S) A 2(1+S)  c (47) 

Now the changes Sc , f c  and SA , / A  are in fact brought about by, and are related to, 
the changes SA,/A, and SK,/K, in tube properties, and the change Sp,/pc2 in external 

2 FLM 95 
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P Y F  9 F  

Pressure, p [ 1- (Iq:iYrJ & (?)&a 

(“A) (1:SP 

Area, A [ ( K ! ! - 2 ] m  (%?&a 

- - -  A 
4( 1 +S)z 

Speed, u 

1 

TABLE 3. Reflexion and transmission coefficients for a small discontinuity in external 
SETT-~FI 6pe 

pressure, 6pe. TF _= 12; 2~ E where F signifies p ,  u or A .  
6FI 6Fi PC‘ 

pressure. Using the appropriate steady-flow relationships (Shapiro 1977 b), equations 
(47) and (48) may be reduced to the more explicit forms 

(50 )  

Limit of small speed index, S --f 0. I n  this case, an increase of A ,  across the dis- 
continuity weakens the transmitted wavelet, and produces a reflected wavelet of 
opposite sign to the incident wavelet. 

An increase of external pressure across the discontinuity strengthens the incident 
wavelet and produces a reflected wavelet whose sign depends upon whether A < 4 
or A > 4. When A’ = 4, there is no reflected wavelet. 

The effects of a change in stiffness depend upon the relative magnitudes of A and 
K p  B/pc2 .  

When S is not small, (49) and (50) yield no simple, general ruIes concerning wave 
transmission and reflexion. 

The foregoing remarks refer to the relative amplitudes of the pressure signals 6 p I ,  
SpT and Sp,. The formulas for the ratios of velocity and area signals may be different, 
as shown by table 3 for the effects of ape only. 

Remarks on second-order effects. In  $ 5  it was stated that, within the limits of the 
first-order linear theory, wavelets once generated would be transmitted across spatial 
jumps in Gp,without change of strength or reflexion. Moreover, the only fluid properties 
affecting the results were found t o  be p and c. We must now reconcile these facts with 
equations (49) and (50) ,  which seem to contradict the statement on transmission and 
reflexion of wavelets, and which also contain the tube property A. 

I n  the development of (49) and (50), it is not assumed that quantities 8pe/pc2, 
6A,/A, and 6Kp/Kp  are of the same order of magnitude as 8pI/pc2.  I n  a wholly linear- 
ized theory, however, they would necessarily be of the same order of magnitude. I n  
that case both (8pT - 8pI) and 6pB would be of order ( 8 ~ ~ ) ~ .  Thus they would be 
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(----I) 2 p a  -1 

4 - 2  K,B  

TABLE 4 

-1 

comprised of second-order terms not considered in the linearized theory of 3 3. We 
also observe that, if second-order terms had been retained in the development of (9), 
(10) and (1 l ) ,  the tube property -4 would indeed have appeared. 

Of what value then are equations (49) and (50)? If the spatial changes in A,, K p ,  
and p e  are large, (49) and (50) do give a correct insight into the manner in which a 
particular small wavelet will be transmitted and reflected as it traverses these large 
changes. Thus these formulas provide an appropriate transition to the nonlinear 
theories of part 2. For instance, reflexions SpR due to Sp, are seen to depend upon 
A 5 4, vanishing for JI = 4; and, if S < 1, the same is true for (SpT-SpI) .  This 
explains findings that would be obscured in a purely numerical solution of nonlinear 
flows. 

The case S > 1. Dealing with equations (45) and (46) in a similar manner, one gets 
the same formulas expressed by (49) and (50). 

When S + m, (49) and (50) go to the limiting forms 

and SP,/~P, -+ [(A- w 4 1  (SA,/A,) + M K ~ / K ~ ) .  

The limit S -+ 1.  Both (49) and (50) appear to blow up when S = 1. However, the 
steady-state equation for d S 2 / S 2  across the discontinuity (Shapiro 1977 b)  is given 
by (42) with added terms on the right in dA,/A, and dKp/Kp.  As  in $ 8  when 
S approaches unity choking can be produced by excessively positive values of 
- A d A , / A ,  and SKp/Kp as well as of -RSp,/pc2. Invoking as before the limits 
implied by choking produces the maximum values of the transmission and reflexion 
ratios associated with Sp,, SA,, and SKp shown in table 4, when S 2 1.  

Thus, except for the reflexion due to SKp, the effects are bounded as S + 1 .  With 
regard to SK,, it  appears that a very small jump SK,, near S = 1 can produce a very 
large reflected wave, a result not readily explainable in physical terms. 

Part 2. Nonlinear theory 
We turn now to motions of large amplitude, subject to strong nonlinearities. Equations 
( 6 )  and (7), which govern such flows, form a hyperbolic system. Consequently, charac- 
teristic curves exist which may be used as a basis for numerical solution. In  what 
follows, we first discuss several analytical results of interest. 

2-2 
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10. Exact solutions for area changing only with time 
For practical reasons it may be advantageous to cause a tube to collapse uniformly 

with distance. Exact solutions for the velocity and external pressure may then be 
obtained. 

Since a is considered now to depend only upon time, equation (6) may be simplified 
and then integrated once with respect to < a t  constant time. Assuming that the tube 
has a closed end at  [ = 0, where @ = 0, the result is 

from which i t  is seen that @ varies linearly with 6. Substitution of this into (7) ,  with 
the friction term assumed negligible, leads to 

Once a(.) has been prescribed, p(7) and r(7) are successively calculable. The ex- 
ternal pressure distribution needed to achieve the prescribed a(7) is found by inte- 

t2 gration as 
P, = -- I’(7) + G(7) ,  

2 (53)  

where G(7)  is determined physically by the value of P, at one boundary, but has no 
effect on the solution as evidenced in (51) and (52) .  

These results were partially foreshadowed by linearized examples given in § $ 6  
and 7. 

Several exact solutions 

An instantaneous pressure application. Let the pressure distribution of (53)  be 
applied a t  7 = 0 and held constant. Then r(7) = constant = 8-2. We set G(7) = 0 
arbitrarily. Integration of (52)  with the initial condition that @ = 0 at  r = 0 yields 
the solution 

which gives the time variation of velocity shown in figure 22. Integration of (51), with 
the initial condition that a = 1 at 7 = 0, gives the area ratio as a function of time, 

2 e7/* a=--- 
1 + e27/8’ 

which is also displayed in figure 22. 
Linear variation of area with time. If we assume that a decreases linearly with time 

according to a = 1 - (7/T),  then @/g = 1/(T-7) and r(7) = 2 / ( T - 7 ) 2  in (53) .  The 
velocity and pressure gradient both go to infinity as 7 -+ T .  

Asymptotic ramp variation of area with time. If a(7) descends from a = 1 to a = 0 
according to an asymptotic ramp given by a = (1 + kJ/( 1 + lc1e7/8), then 

@/< = k , e7’6/@( 1 + k, e7@) 

and F(7) = k,e7/e/e2( 1 + k,e7is). The velocity now only changes by the factor (1  + k , ) / k ,  
from 7 = 0 to 7 +- 00, and the pressure gradient by the same factor. 
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FIQURE 22. Velocity and area distributions for uniform collapse according to (52) 
with r(7) = constant = 

11. The characteristic curves 
The solutions to the hyperbolic system comprising equations ( 6 )  and (7)  contain 

curves on which the first derivatives of the dependent variables may be discontinuous. 
Formulated along these so-called characteristic curves, the partial differential equa- 
tions are in effect transformed into ordinary differential equations, the equations of 
the characteristics. 

Using well-known methods (e.g. Abbott 1966), the characteristic curves correspond- 
ing to ( 6 )  and (7)  are found to be 

and 
K p  * da 

d@&(-) KZ V-+$d7=0 ,  a 

(54) 

where 

The x, t trajectories defined by (54) represent signals that propagate in wave-like 
fashion, with speed f c ( +  for rightward moving, - for leftward moving) with re- 
spect to the local fluid. Along these physical characteristics changes in state occur as 
determined by ( 5 5 ) .  

Equations (54) and ( 5 5 )  define two families of curves, the former in the 'physical' 
( [ , 7 )  plane, the latter in the 'state' (@,a) plane. The signs in the two equations 
correspond to the two families: upper sign for rightward moving, lower sign for left- 
ward moving. 

11.  I .  Integration of the state Characteristic for a uniform tube with %' = 0 

The state characteristics, equation (55), are coupled to the physical characteristics, 
equation (54); by reason of the term X and the non-uniformity in Kp.  However, 
when & = 0 ,  the state characteristics are integrable wholly independently of the 
physical characteristics. These integrated state Characteristics are useful even when 
X is not altogether negligible, as one may then bring in the missing term X d r  by 
various ad hoc procedures, particularly in graphical solutions. 
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The  @, a characteristics. The simplified state characteristics, with 2 = 0 and 
K,/KE = 1, are given by integration of (55 )  as 

= T J F d a + c o n s t a n t .  

Here the symbols 9 (for rightwards) and 9 (for leftwards) refer respectively to the 
upper and lower signs, and signify the directions of the physical characteristics 
described by (54). 

Quadrature of (56), using the particular function $?(a) of figure 1,  produces the 
curves of figure 23 (a) .  Powerful nonlinearities and asymmetries are evident. 

The  %,V characteristics. Since %? = $?(a), the characteristic curves a(%) of figure 
23 (a)  may be transformed to the characteristic curves $?(@) of figure 23 (b). 

A 'simple' right-running compression wave (see 3 12), each element of which pro- 
pagates at  speed d( /dr  = % + $?, will evidently steepen as it progresses if 

(d$?/d@)y > - 1 

and will broaden if (d$?/d@)p < - 1.  The converse is true for a simple right-running 
rarefaction; it will steepen if (d%?/d%)p < - 1 and will broaden if (d%?/d%)9 > - 1.  
The 9 curves of figure 23(b) have, for the most part, a slope d%?/dq > - 1; hence 
simple compression waves generally steepen, and simple rarefaction waves generally 
broaden. However, over a short segment of each 9 curve, d$?/d@ < - 1, suggesting 
that the opposite behaviour may also occur. 

T h e  %, ,8 characteristics. If we introduce the variable P(a) through the definition 

Then the %,p state characteristics are the curves 

These plot as straight lines of slope 

important tube-law property A (see figure 1) by 

d%a,y = i dp; %9,y = T p+ constant. (58) 
1, as in figure 23 (c). 

The latter shows on the abscissa scale the function %?(p). This is related to the 

; 
d$?(a) d ( a ) - 2  d ( a )  = 3 f a 9 " ( a ) / Y ( a ) .  dpo= 2 (59) 

In  $12 it  is shown that simple compression waves steepen if JY > 0 and broaden if 
J% < 0. The condition JZ = 0 corresponds to d%?/dp = - 1.  Hence, referring to figure 
23(c), a simple compression wave steepens where dp/d$? > - 1 and broadens where 
dp/d$? < - 1;  and conversely for a simple rarefaction wave. In  a narrow range of B 
below the point marked 4 = 0, rarefaction waves steepen; outside this range, com- 
pression waves steepen. 

12. Simple waves 
We use the customary definition of a 'simple wave' (Whitham 1974) as a region of 

flow in which @ is a function of a only. It may be shown that such flows exist only in 
regions where the tube is uniform and the term S i n  (55) is zero.? 

f An exception is when a in (55) is a function of 5 alone plus 8 function of 7 alone, but this is 
quite special and artificial. 
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FIGURE 23. Simplified characteristic curves for uniform tube with 2 = 0, using tube law of 
figure 1. (a) @,a characteristics. ( b )  %!,V characteristics. (c)  @,/3 characteristics. The dot-dash 
curve separates the sub- and supercritical zones. 
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12.1. Relationships in a simple-wave region 

Limiting ourselves to such regions, the condition that @ = @(a) allows us to write 
a@/a( = ( d @ / d a )  (aalafl) and a-32/87 = (d%/da)  (aa /h ) .  Substitution of these into (6) 
produces 

- aa = -("+az)7@ do2 8a 
87 

while substitution into (7) yields 

Division and simplification then gives 

d@/da = +%'/a. 

Putting this into one of the previous equations, we ge 

Thus t,he curves of constant a: and constant %'(a) (and, since i t  is a simple-wave region, 
of constant @ as well) are defined by 

12.2. Physical interpretation of a simple wave 

Comparison of (60) and (61) with (54) and ( 5 5 )  shows that a simple wave of that 
physical family (e.g. 9') on which the state @,a is constant is mapped on a state 
characteristic of opposite family (e.g. 9). 

Thus, in a simple 9 wave, the properties (42, g, a are constant on the straight lines 
d&/dr = 92 + V,  and the changes of state from one such line to the next are connected 
by the plus sign in 

d@ = & (%'/a) da = + dP/%'. 

An 9' simple wave propagates on the straight trajectories d&/dr  = @-%', and (62), 
but with the minus sign, applies. 

Physically, a simple wave represents a continuous train of pressure pulses pro- 
pagating in a single direction, and without reflexion, a t  the speed * c relative to the 
fluid. Each small element of the wave amplitude follows the linearized relationships 
[compare (62) with (34) and (35)]. A simple wave is most easily generated by excitation 
at one end of a very long tube, for example by injection or withdrawal of fluid, or by 
means of a piston. And, as will soon be seen, it may also be generated by the applica- 
tion of external pressure over a limited length of a long tube. 

12.3. Change in shape of a simple wave 

Consider a simple 92 wave (or a simple 9 wave viewed from the rear of the paper), 
and let the operator 23123~ signify the time rate of change while following the wave 
a t  the speed @+%. We may choose 8(42/at (or, alternatively, aa/at or aP/a<) as a 
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& > O  . A = O  & < O  

Compressive waves Steepen Unchanged form Broaden 
Rarefaction waves Broaden Unchanged form Steepen 

TABLE 5 

measure of the instantaneous steepness of the wave a t  a particular location. Steepening 
or broadening of the wave as it progresses is then determined by the sign of 

Now (a/&) (a@/a[)  = (a /a [ )  ( a @ / a ~ )  is calculable from the simplified version of (7).  
The term in the latter may, for a simple 9? wave, be written as (a/%) (a@/at) ,  

The 6 derivative of the third term of (7)  introduces a%'/a[, which may be calculated 
= ( d V / d a )  . (da/d@) (a@/a() .  By (62), da/d@ = a/%. Differentiation of (4) 

in keeping with (62). 

as 
produces 

where A ( a )  is given by (59). Thus we obtain %?/a[ = $(A- 2) (a@/a[). 

the simple 92 wave, 
Making the appropriate substitutions in (63), and simplifying, we finally get, for 

(65) 

or, if the pressure rather than speed were considered, 

A similar expression applies for aa/a[. 
Consider, for instance, a compressive 9 wave: in such, a@/a[,  aP/a[ and aa/ag 

are all negative. If 4 > 0,  they all become increasingly negative; thus the wave 
steepens. Following this line of thought, we may summarize as in table 5.  

For 0.5 2 a 7 1.1, 4 has high positive values (figure 1). In  the similarity range 
(a < 0-21), A = +. The data of figure 1 suggests that A is negative over a narrow 
range of a, and this is confirmed by more recent data of exceptional accuracy 
(McClurken 1978). Does this result depend significantly upon the particular tube? 
This is difficult to answer conclusively because of the potential for large errors in calcu- 
lating aB"/B' from experimental data. 

Thus it appears that, with regard to the partially collapsed range, compressive 
waves in thin-walled compliant tubes for the most part steepen, but not always; and 
conversely for rarefaction waves. Whether the same is true of veins and arteries 
surrounded by tissue is at this stage not known. 

12.4. Simple-wave theory applied to collapse of a tube 
by a spatial step in external pressure 

We now reconsider the problem of a spatial step in external pressure, as in figures 4, 
5 and 6, which previously was solved by the linearized theory. The nonlinearities 
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produce interesting effects that are vital to the understanding of the experimental 
results in part 3 .  

Let the tube be initially full and unpressurized, and the fluid motionless; that is, 
for 7 c 0:  a = 1 and @ = 0. Starting a t  7 = 0 ,  the time-varying external pressure 
P,- (7) is applied uniformly over the region 6 ,< 0, while P,+ (7) remains at its original 
value in the region 6 > 0. At c = 0, the spatial step P,-(T) - P,+(T) is a functios of 
time. 

The two simple-wave regions. Since & is zero except at 6 = 0, the regions on each 
side of the spatial pressure step may be treated by simple-wave theory, with appro- 
priate matching conditions applied at  the discontinuity. As shown in figure 24, a 
simple 9 compression wave increases the area, pressure, and velocity in the region 
6 > 0; simultaneously, a simple 2 rarefaction wave increases the velocity but de- 
creases the area and pressure in the region 5 < 0. Figure 24(c)  shows the W wave 
mapped on the appropriate 9 characteristic of figure 23 (a) ,  and the 2 wave on the 
appropriate LJi? characteristic, as determined by constants of integration corresponding 
to the initial state, namely @ = 0 and a = 1.  

If P,- is applied instantaneously, all the physical characteristics, or wavelets, 
originate at 6 = 0 , 7  = 0, and each simple wave is centred. 

Matching conditions at 5 = 0 .  Within the scope of this solution, the flow at the dis- 
continuity is treated as quasi-steady and free of losses. Thus, conservation of volume 
flow and Bernoulli's theorem require that the product @a and the sum ( P  + P, + $@2) 

be respectively the same a t  6 = ~t 0. 
The characteristic curves @(a) of figure 24(c )  are therefore replotted in the form 

@a vs .  a, which offers the advantage that corresponding states on either side of the 
discontinuity (e.g. 2 R  and ZL, 3R and 3L,  etc.) are connected by horizontal line. 
For each such pair of corresponding states, the associated value of @a, together with 
the constancy of P + P, + &a2 and the tube law of figure 1, allows one to calculate the 
associated step in external pressure, P,- - P,+. 

In  this manner, starting a t  the condition a = 1,  the dimensionless flow @a(O,7) 
may be determined as a function of the applied pressure Pe-(7), as in figure 24(d ) .  

Flow limitation (choking). In  figure 24 (c), the two branches of the curve @a(a) for 
a < 1 and a > 1, respectively, exhibit a dramatic asymmetry, due to the powerful 
nonlinearity in the tube law. 

In  particular, the fact that the curve for a < 1 has maxima and minima is of great 
practical importance with regard to choking, or flow limitation. At an extremum of 
@a vs.  a, we may write d(@a)/da = 0,  whence it follows that ad@/da + @ = 0. But, 
writing (62 )  for an 2 wave, d@/da  = -%/a, we get @ = % a t  any extremum. Thus, 
quite independently of any particular tube law, the flow speed @ equals the wave 
speed V, and the characteristic curve of @(a) for a < 1 crosses the curve of %?(a), at 
exactly those values of a corresponding to extrema in the flow curve of figure 24 (c) .  
These correspond also to the locations in figure 24(d )  where the curve of (@a)+,, ws. 
P,-(7) doubles back onto itself. 

Thus it appears that the flow rate becomes limited when left-running rarefaction 
waves propagating at  the speed @ - %'become trapped at  the location where @ = %?. 
Of the two maxima in @a in figure 24 (c), only the first one, at  a* g 0.44, is physically 
meaningful. In  figure 2 4 ( d ) ,  this corresponds to the first cusp at P,- 2 0.32. 

Beyond this first occurrence of @ = %?, the solution a5 given fails: the succeeding 9 
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FIQURE 24. Simple-wave solution for time-varying step change in external pressure over the 
range E < 0. (a) 6-7 wave diagram, showing9 compression wavelets (solid lines) and 9 rarefaction 
wavelets (dwhed lines). ( b )  Area distribution a t  the time 7,. ( c )  Characteristic curves @(a) from 
figure 23 (a) and corresponding curves of @u w8. u. Also curve of%(a) from figure I .  (d )  Dimension- 
less flow at E = 0 as a function of applied external pressure. The dashed portions of the curve are 
physically meaningless. 
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waves generated a t  5 = - 0 can no longer propagate into the region 5 < 0, whereas 
the calculation assumes that the state at ( = - 0 is determined by the entire 9 wave. 

Post-choking ; shock-like transition. What happens physically when P,- exceeds 
N 0.32, at which condition '42 first reaches %? and the flow @a reaches the first maxi- 
mum? The model as given requires that the flow at [ = + 0 have the now-fixed choked 
value of %a as well as the Bernoulli constant a t  [ = - 0;  it  must also lie on the 9- . 
state characteristic in figure 24(c ) .  So stated, the problem is over defined: all these 
conditions cannot be met. 

Some modification of the model is evidently required. This can presumably be in 
the form of a shock-like dissipative transition. 

Imagine the discontinuity to have a small but finite width. The matching conditions 
previously specified for the step change in P,- are now replaced by quasi-steady 
inviscid equations, with changes in state brought about by continuous changes in 
P, (Shapiro 1977b). When the flow is just critical at  the upstream end (( = 0 )  of what 
is now a short pressure ramp, the reduction in P, along the ramp allows the downstream 
state (5 > 0 )  to follow one of two paths: either subcritical or supercritical. If the 
external pressure P,- is increased just beyond that necessary to attain critical velocity 
a t  5 = 0, a supercritical path will be followed and a shock-like transition, involving a 
rapid area increase and velocity decrease will appear at an appropriate location. 
This can provide the adjustment, by way of energy dissipation due to flow separation, 
needed to match the downstream solution. 

Such shock-like transitions for supercritical steady flow in collapsible tubes, occur- 
ring over a distance of the order of the tube diameter, have been observed, although 
there is as yet no fully satisfactory theory for either the shock structure or the trans- 
shock changes in state (Griffiths 1971a; Oates 1975; Shapiro 19773; Dawson & Elliott 
1977; Elliott & Dawson 1977; Kececioglu 1978). 

The greater the external pressure, the larger the region of supercritical flow to be 
expected, and the stronger the shock. An analogous situation is the development of 
a shock, downstream of the throat, for gas flow through a Lava1 nozzle when the 
supply pressure is raised beyond a certain value while the exhaust-region pressure is 
maintained constant. 

One is struck by certain similarities between the problem discussed above and a 
gasdynamics shock tube experiment. As in the collapsible tube following upon external 
compression, the flow in a shock tube is accelerated when the diaphragm is punctured; 
on the high pressure side by rarefaction waves propagating upstream and on the low 
pressure side by compression waves propagating downstream. In both cases a shock 
develops downstream at the leading edge of the compression wave. However, because 
the wave speed is monotonic in p for gasdynamic flows, the anomalous behaviour 
described above, producing a second shock close to the initial discontinuity, is not 
observed in the shock tube. 

Further comments on the origin and development of a shock-like transition appear 
in 5 13. 

Practical interpretation of the results. Even before choking and its consequences 
occur, the discontinuities in all properties a t  the location of the pressure step (except 
for u < c ,  when the discontinuity in internal pressure is negligible) suggest other 
considerations in the interpretation of the results. 

First, the tube law of figure 1 ignores what are now large effects due to bending 
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moments and membrane forces associated with axial tension and longitudinal cur- 
vature of the tube wall. 

Second, even if one ignores the frictional stresses associated with high velocity a t  
the throat formed a t  [ = - 0, one cannot dismiss what would surely be serious head 
losses due to separated flow in the rapid expansion of area. 

While the model is for these reasons incorrect in detail, it  surely indicates: (i) 
a tendency to form a throat that will ultimately be flow limiting; (ii) that large head 
losses will occur downstream of the throat in a region of continuous but rapid change; 
(iii) that, beyond a certain value of the applied external pressure, the rate of emptying 
cannot be further increased; and (iv) that, beyond this value, conditions downstream 
of the pressure step have no effect upstream of the throat. 

We also observe that, because in general A > 0, the compression wavelets in the 
region 5 > 0 are convergent, with the consequence that a shock-like structure will 
ultimately form there, as in the gasdynamic or free-surface analogue. 

Finally, we remark that a reduction in the external pressure Pe+, in the downstream 
region [ > 0, while maintaining constant the external pressure Pe- in the upstream 
region, < 0,  will produce results equivalent to those described. 

12.5. Application of simple wave theory to rejilling of a collapsed tube 

Imagine a long tube in static equilibrium, the right-hand portion of which is partially 
collapsed by the external pressure P,+. The latter is released, and the tube refills. 
We now improve upon the linearized solution of 5 6.3 (see figure 17). 

Instantaneous pressure release. Since aP,/a[ = 0 on both sides of 5 = 0, the instan- 
taneous vanishing of P,+ results in two centred simple waves: an W compression (2 to 
2c)  and an 3 rarefaction ( 1  to  1 c ) ,  as in figure 25. 

The solution is shown as though both wave trains broaden rather than steepen. 
More likely, however, the compression wave propagating rightwards will have inter- 
secting physical characteristics, and a shock-like transition will quickly form. 

Disregarding this for the moment, the simple waves are of such strength as to remove 
the discontinuity in area at  5 = 0,  without creating any discontinuity in velocity. 
Zone 3 is a finite region of uniform state. The latter is determined by equations (58)  
as follows: between zones 1 and 3, on an W characteristic, e3 = - (P3-P1); between 
zones 2 and 3, on an 9 characteristic, e3 = P3 - P2. Solving these, we get 

P 3  = 3(/31+/32) and @3 = W1-/32), 

results which are evident graphically in figure 25 (c). 
The magnitudes of the two area waves depend upon the tube law, P(a), and the 

value of a2. For a highly collapsed state 2, the right-running area wave is small, the 
left-running wave is very large. Conversely, for states 2 which are not so highly 
collapsed, the two area waves will be more comparable in magnitude. 

If the W wave forms a shock-like transition, the wavelet system 2-2a-2b-2c 
would coalesce into a shock structure that progresses on a 5, T trajectory flatter than 
that of wavelet 2, that is, more rapidly. There is no reason, if p2 is sufficiently small, 
for state 3 not to be supercritical; if this is so, wavelet lc  propagates rightwards. 

Gradual release of pressure. Suppose now that Pe+ is released only gradually. The 
situation is then somewhat comparable to that of figure 24. Simple waves are 
generated, as above, but now they are non-centred. Thus figure 25 (b)  is modified, but 
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FIGURE 25. Refilling of a partially collapsed tube. (a)  Area distributions at 7 = 0 and 7 = 7,. 

( b )  Wave diagram in physical plane. (c) Solution in %',p state plane. 

1 

2 

t 
FIGURE 26. Refilling of a tube partially collapsed over a finite ramp length. 

(a)  Area distribution at  7 = 0. (b )  Wave diagram. (c) @,/3 state diagram. 
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FIGURE 26. Refilling of a tube partially collapsed over a finite ramp length. 

(a)  Area distribution at  7 = 0. (b )  Wave diagram. (c) @,/3 state diagram. 

figure 25 (c) remains unchanged. A shock presumably forms as the compression wave- 
lets merge, but this occurs some distance downstream, rather than instantaneously. 
Until P,+ is reduced to zero, there exist at 5 = 0 discontinuities in area, velocity and 
pressure which are subject a t  each instant to the matching conditions, at E = f 0,  of 
equal volume flow and equal Bernoulli constant. 

ReJilling of a linear area ramp. Figure 26 shows the soIution for a linear ramp in 
area when the external pressure that maintained it is released instantaneously. 
Within the ramp region, waves of both families are present during a brief period, but 
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the final state 15 in the ramp region and beyond is uniform and identical with the final 
state for a step change in area (see figure 25). The waves emerging from the ramp 
region are simple waves. 

.13. Collapse of a tube by a ramp of external pressure 
In the presence of an external pressure gradient apela[, or whenever &' is not zero, 

it  is usually necessary to construct the solution by numerical integration of the 
characteristic curves (54) and (55). However, if the gradient aPe/a[ is constant, certain 
interesting and useful results fall out analytically, and quite independently of any 
particular tube law. Accordingly, we reconsider the linear ramp in P,([) of figure 2(a) ,  
but now without the restriction of small amplitude. 

Inasmuch as reflexions from boundaries are assumed not to occur, the problem as 
stated may be regarded as a model of the earIy stages of collapse near the edge region 
of a uniformly applied external pressure. That the edge region is here assumed linear 
rather than, say, S-shaped is probably of small consequence provided that we ignore 
pecularities due to the corners in P,([) .  

This example also expands the details of the seeming discontinuity that inevitably 
appeared in the analysis of a spatial step in external pressure ( 9  12.4 and figure 24), 
and of course it is physically more realistic. 

13.1. Formulation of the analysis 
Initially, the tube is a t  rest and the fluid motionless. At r = 0, therefore, @ = 0, 
a = 1,  V = 1,  and ,8 = 0. Relative to its initial uniform value (which is conveniently 
called zero), the external pressure for 7 2 0 is given by: P, = 0 for 5 > 1 ;  P, = P,-(7) 
for [ < 0;  and P, = ( 1  - [) . Pe- (7) for 0 < 5 < 1 .  The gradient aPe/a5 is zero outside 
the pressure ramp, i.e. for 5 < 0 and 5 > 1; within the ramp region, 0 < [ < 1, it is 
given by - P,- (7). 

For convenience later, we introduce the notation 

rI(1)(7) = Pe-(7); rI'2'(7) e rI'l)(r) d7; rI(3)(r) = no(,) d7. (67) 1: /or 
Note that rIcz) and 

In the ramp region, (54) and (55) now reduce to 

have the character of pressure-impulse integrals. 
We assume the tube to be uniform, and we neglect friction and tributary flows. 

and 

where in each case the upper sign goes with 9, and the lower sign with 9. Equations 
(68) and (69) also apply outside the ramp region, except that d r I o ( r )  is to be taken as 
zero. 

13.2. Graphical solution (figure 27) 

Given a particular pressurization function, the solution may be developed graphically 
by simultaneous construction of the physical and state characteristics (figures 27 a 
and 6 ) .  In the state diagram, the change along an 9 characteristic (or, respectively, 
an 9 characteristic) may be represented by a horizontal displacement of magnitude 
A l l @ )  followed by a displacement along a line of slope - 1 (or, respectively, + 1) .  For 
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FIGURE 27. Collapse of a tube by a descending linear ramp of external pressure in the range 
0 < 6 < 1 .  (a) Wave diagram. Zone I: triangle n-14-m. Zone 11: triangle m-14-10. Zone 111: 
triangle n-4-14. Zolle TV: bounded by 6 = 0, 5 = 1, 14-4, and 14-10. Zone V: region 5 < 0; 
0 < T < T~, , .  Zone VI: region 6 > 1 ;  0 < T < 74. ( b )  State diagram. 

instance, to locate state 19 from states 17 and 18, one first lays off 17-17n equal to 
rIi;) - II# and 18-18a equal to nit) - ITj2,)), and then finds the intersection point 19. The 
respective slopes in the physical diagram are given by the appropriate mean values of 
Q*%. 

13.3. Results for an arbitrary tube law 

Outside the ramp : simple waves. For 6 > 1 ,  in zone VI, a simple wave of compression 
propagates to the right, increasing @, /3 and 31. For 6 < 1 ,  in zone V, a simple wave 
of rarefaction propagates to the left, also increasing %! but decreasing /3 and a. These 
simple waves outside the ramp are similar to those that occur with the spatial step of 
pressure (figure 24). However, the physical characteristics have to be integrated 
through the ramp in order to establish the values of 7 at the points 1,2,. . , ,9 ,10  from 
which the simple waves originate. This of course requires knowledge of the particular 
tube law and of the pressurization function. 

Zone I. Consider a typical point 12 in this region. Noting that "I/ = 0 and = 0 
f o r m ,  r ,  s and n, (69), applied along r-12, gives @lz = -/31z+ IIii); and, along s-12, 
Q12 = BIZ+ IIi;). Solved, these define the state a t  12 as eI2 = rI$i) and BIZ = 0. 



Unsteadyjow in a collapsible tube 49 

Along a line of constant 7, therefore, say 11-12-13, the velocity is independent of 
< and the area is unaltered from its original value. 

The entire zone I of figure 27 ( a )  is thus mapped onto the straight line from the origin 
to 14 in figure 27 (b). 

Along a line of constant 7, e.g. 11-12-13, @ and 2? are both constant. Consequently 
the wave slopes (dE/d7),,, = @ 5 %? are also constant. Thus the physical W character- 
istics in the triangle n-14--m are identical in form and parallel, displaced one from the 
other along the 6 axis; similarly so for the 9 characteristics. I n  zone I ,  therefore, 
waves can never intersect. 

Employing the previous results, namely that Y: = 1 and @ = II@), the equations of 
the two bounding characteristics of zone I may be integrated: t13 = 713 + IIi:); and 
tll = 1 - 711 + n$:). Simultaneous solution of these a t  the apex point 14 yields 714 = + 
and g14 = 4 + F3)(4) .  

The 2 characteristics become vertical when the flow speed reaches critical speed, 
% = V, that is, a t  the time defined by II@)(7) = 1. This will occur somewhere within 
zone I only if the pressurization function is sufficiently large that II(z)($) z 1. 

If, however, n@)(7) is too large, the solution as described above may not be valid 
for one of two reasons. First, if n(3)(4) > $, 4? > %' and, also, point 14 moves outside 
the ramp; in that case the solution as given is valid in the region below the W 
characteristic that  passes through the intersection with .( = 1 of the 2 characteristic 
starting at, point n. Second, two characteristic curves of the same family may intersect. 
When this occurs, the method of solution beyond the point of intersection must be 
modified as described later. If the intersection occurs between, for example, the 9 
characteristic n-11-14 and its neighbour in zone 111, point 14 will lie in a region of 
multi-valued solution. 

The left-hand edge of the ramp, [ = 0.  Consider a typical point 8 at 5 = 0 ,  such thnt 
0 < 78 < 710. FT'ritten for the $ and 2Y characteristics arriving a t  8, ( G O )  gives 
q/8 = -p8 and ?/8 = /I8+ IIiz), respectively. Solved, these yield 'a8 = & I I f J  and 
pa = - gIIiz). Assuming that 11(2)(7) increases monotonically, this shows that a t  
[ = 0 the velocity increases monotonically with time and the area, decreases mono- 
tonically. For 0 < 7 < 714, the velocity a t  [ = 0 (say a t  7 )  is exactly half the velocity 
within zone I a t  the same instant of time (i.e. a t  13, 12 and 11). 

The line 5 = 0 in figure 27 ( a )  is mapped onto the d characteristic m-7-8-9 in figure 
27 (61, which also represents all of the simple-wave region of zone V. 

The right-hand edge of the ramp, 6 = 1. By a similar calculation, a t  any point on 
5 = 1 where 7 < 74, ql = in(2) and /3 = $ncz). Thus both 4?/ and /3 increase mono- 
tonically with time, and are equal. For 0 < 7 < 74 (say a t  1) the velocity is equal to 
the velocity at [ = 0 a t  the same time (i.e. a t  7) and is half the velocity within zone I 
at the same time (i.e. a t  11, 12 and 13). The increase of /3 a t  1 equals the decrease at 
7, but the area changes may be quite different because of the nonlinearity of the curve 

The line [ = 1 in figure 27(a) maps onto the 9 characteristic 12-1-2-3-4-5 in 
figure 27 ( b ) ,  which also represents the entire simple-wave region of zone VI. 

Flow limitation. If the pressurization function n(l) is sufficiently intense to produce 
supercritical speed, this will presumably occur first in the upstream portion of the 
pressure ramp. 

Neglecting peculiarities associated with the corner in P&) a t  < = 0, the wave 

.(PI. 



50 R. D.  Kamm and A .  H .  Shpiro 

\ I \  \. ‘ 

‘t 

0 1 E 
FIUURE 28. Wave diagram of figure 27(b)  when critical speed @ = % is 

reached at 5 = 0, T = T ~ ~ .  

diagram would then be as in figure 28. Critical speed, (32 = %, as shown, first occurs 
at point 51, and curve 51-52-53 is the boundary between the zones of subcritical and 
supercritical speed. Above this curve, the 9 characteristics, as well as the 9 charac- 
teristics, have positive slopes. 

Once the flow has reached critical velocity at 5 = 0, 2’-rarefaction waves can no 
longer accelerate the flow there. Since the flow velocity in zone V cannot become 
supercritical for the reasons given in 5 12, the flow at E = 0 remains exactly critical. 
The velocity, area and flow rate at  = 0 then correspond precisely to the conditions 
at a* in figure 24 (c). As a result, the 9 characteristic 50-51 remains vertical above 751. 
However, within the ramp region, 92 compression waves may in fact accelerate the 
fluid to supercritical speeds, contrary to the view often expressed that there is no way 
of exceeding the critical speed. Thus the flow inside the pressure ramp or even emerging 
from the ramp may be supercritical. But if any increase of flow rate, beyond the value 
of (@a)max in figure 24(c), occurs downstream of the ramp, it is only by reason of the 
more rapid collapse within the ramp region itself, since the rate of collapse upstream 
of the ramp is no longer affected by the pressurization, no matter how large the latter 
may be. 
Typical results. Figure 29 shows schematically the distributions of area and velocity 

a t  various times for the wave diagram of figure 28, in which supercritical speeds 
are reached. After the time T ~ ~ ,  the flow at the upstream end of the ramp is choked, 
and remains unchanged. 

13.4. Development of shock-like transitions 

We must now inquire whether, in the solutions presented, physical characteristics of 
the same family can intersect. Should this happen, the mathematical solution would 
produce multi-valued fluid properties, a physical impossibility. Presumably, as in 
gasdynamics, a shock-like transition would then appear. 
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E 
FIGURE 29. Schematic profiles of area and velocity corresponding to  figure 28. 

E =  1 

FIGURE 30 

Outside the ramp. Assuming that A > 0, the simple compression wave system 
downstream of the ramp will steepen and form a shock. Upstream of the ramp, 
again with A > 0, the simple rarefaction wave system will broaden rather than 
steepen; thus no shock will form. 

Inside the ramp. We have already shown that neither the 9 waves nor the 9 waves 
that originate at 7 = 0 inside the ramp region intersect within zone I of figure 27 (a) .  

What remains to be considered then is the situation of figure 30. Here either the 
9 characteristic 4-5-3, or the W characteristic 1-2-3, or both, intersecting at 
( t 3 , ~ 3 ) ,  originate a t  7 = 0 outside the ramp. Equations (69), written respectirrely 
along 9 and 9, give @3 = -p3+ IIp) - II(2). 2 ,  and e3 = p3+ IIi2) - IIg"). Addition and 
subtraction of these yield 

(70a) 

and P 3 = z  l r J ( 2 ) - l l - I ( 2 ) *  5 2 2 (70b)  

c& - H(2) - l rJ (2 )  - r n ( 2 )  
3 -  3 3 2  2 5  

Intersection of 9 waves. Consider the W wave passing through the fixed point 2. 
The slope of G? a t  any point 3, within the range 0 < < 1,  is given by 

Point 
line T = 0 or the line 6 = 1.  Note that, if 5 lies on 7 = 0, IIf) = 0. 

is located at  the intersection of the L? wave passing through 5 with either the 
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Integration of (71) along 9, from 72 to 73, produces 

Now, considering a neighbouring 9 characteristic passing through point 2', we 
shall form the derivative (a53/a72)73=const.. This is the ratio of the horizontal spacing, 
between the neighbouring curves at any time 73 to the vertical spacing at 5 = 0; 
should this derivative vanish, neighbouring A? characteristics passing through 2 inter- 
sect a t  the time 73. Differentiation of (72) gives 

From (67), we see that dI143)/d72 = IIh2), and that dI142)/d72 = II4'). Using (59) and 
(70), we form 

Integrating this along 9, we obtain the approximation 

where 2 is now some reasonably selected mean value within the interval 2-3. The 
last term of (73) may be written as 

Inserting these several terms into (73), and setting the left-hand side equal to zero, 
we may solve approximately for the time 7& at which neighbouring curves passing 
through 2 will intersect: 

Inspection of (71) for the condition that 3 coincides with 2 shows that the result just 
given may be expressed more effectively as 

where (d(/d7),,, is the slope of 9? a t  2. 
the sign of which 

determines steepening or broadening of simple waves ( 9  12); and the term (-47- 4), 
the sign of which determines the nature of wave transmission and reflexion in a 
gradient of external pressure (4 9). 

Here it is interesting to observe the presence of the term 
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Equation (74) is unfortunately not explicit in 7:w because the integral depends 
upon 7&. If however, point 4 originates inside the ramp, IIf) = 0; furthermore, 
according to (70b) ,  p3 = p2; thus 2 = A2. Accordingly, (74) reduces to 

In  these equations, (d( /d7)w,2  > 0, Hi1) > 0 and HF) > 0; but (875/a72),z < 0, as 
may be seen from figure 30. 

Intersections in zone I I .  If A > 0, (75) indicates that (7zw - 72)  < 0, a result that 
is physically meaningless in the context of this analysis. The appropriate interpreta- 
tion is that, since (7& - 72)  is not positive, compression W waves starting on the line 
m-10 of figure 27 (a)  do not intersect within zone 11. 

0, a simple compression wave tends to form 
intersecting characteristics. The present result therefore implies that the rarefaction 
9 waves in this flow so interact with the compression W waves as to inhibit the latter 
from steepening within zone 11, even though A > 0. 

Previously we found that, for A 

When A < 0, on the other hand, intersections do tend to occur in zone 11. 
Intersections in zone I V .  The term $(A- 4) multiplying the integral in (74) vanishes 

for A = 4, as do reflexions produced by the gradient ap,/ax. Thus this term presumably 
represents the effects on W waves of reflexions from 2' waves. 

Inspection of (74) shows that, when 2 > 4 , W  waves do not intersect in zone IV. 
When A < 4, it  is ambiguous whether such intersections occur, except that, when 
A g 0, any tendency to intersect would be delayed until the W waves have passed 
out of zone IV. 

Intersection of 9 waves. A parallel analysis for the 9 wave of figure 30 gives the 
following expression for the time 7:y a t  which neighbouring Y waves passing through 
Doint 5 will intersect: 

Here, point 2" is located a t  the intersection of the W wave passing through either 
7 = 0 or 6 = 0 and a point 3 located along the line 5-3. 

If point 1 originates inside the ramp, (74) becomes explicit for 7&, since Kf) = 0 
and -4 = A5. It reduces to 

es 

In  these equations ( - dE/d7),, > 0, nhl) > 0, and II!) > 0; but ( d 7 ~ / d 7 ~ ) + ~  < 0. 
Intersections in zone I I I .  Here equation (77)  is applicable. Thus, if A > 0, inter- 

sections are possible; if -4 < 0, intersections cannot occur; and, if A = 0, any ten- 
dency to intersect would be delayed until the 9 waves have passed out of zone 111. 

The fact that it is rarefaction waves that tend to intersect for A > 0 is curious, 
since a simple rarefaction wave would broaden. Presumably this signifies the import- 
ance of the interaction with the compressive 92 waves to the tendency of steepening 
or broadening. 

Intersections in zone I V .  Inspection of (76) shows that: (a)  when J? > 4, intersections 
are ambiguous; ( b )  when 0 < A < 4, there is EL tendency for intersections to occur; 
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(c) when A < 0, intersections do not occur; ( d )  when A 0, any tendency to intersect 
would be delayed until the 9 waves passed out of zone IV. 

When, in any of the foregoing instances, there is a tendency for intersections to 
appear, they occur more rapidly as the intensity of the pressurization function IS1 
is increased, owing to the greater strengths of the wave systems and the concomitantly 
greater nonlinearities. 

13.5. Results for  constant applied pressure using a simple tube law 
Several generalities mentioned above are further illuminated by the calculations 
below for a specific tube law and schedule of pressurization. 

Pressurization function. We assume that the applied pressure is constant and 
applied instantaneously. Thus, for r 2 0, P,- = PT = constant; nS(7) = P,*; 
n(2)(7) = P,*r; and ll(3)(r) = +P,*72. 

Tube lau. As a compromise between a realistic representation and one that results 
in mathematical transparency, we select the function 9 E +(az - 1). The associated 
variables are then: $? = a ;  /3 = a-  1; and 4 = 4. Note that this value of 4 implies 
that  wavelets do not reflect and that simple compression waves steepen. 

Solution. Table 6 displays results obtained in a straightforward manner by inserting 
these particulars into the general formulas developed previously. It has been assumed 
for table 6 that the wave diagram has the general form of figure 27(a);  for this it is 
sufficient but not necessary that the flow be everywhere subcritical. 

I n  zone I ,  the dimensionless flow rate is @a = PZ7, increasing linearly with time 

In  zone IV, both @ and a become wholly independent of time, varying only with 5. 
Beyond 710, therefore, the segment within the ramp region, 0 6 6 6 1, behaves like 
a rigid tube in which there is a steady flow that merely transfers fluid from 6 < 0 to 
5 > 1. In  accord with this, the flow rate proves to be @a = +P,*, i.e. it is a constant, 
varying neither with time nor distance. For a tube law which permits wave reflexions, 
this would not necessarily be the case, but presumably an approximation to this 
condition would prevail for large r. 

Choking. At 6 = 0, G2 increases linearly with time up to 710 = [ 1 - (1 - 2P,*)t]/P,, 
and subsequently remains constant a t  the value (9i)6=0,7,710 = +[ 1 - (1 - 2P,*)t]. 

If P,* reaches the value 4, however, the critical condition @lo = Vl0 = + occurs a t  
rl0 = 2. The 9 characteristic at 10 then has a vertical slope. For P,* > 4, the 2’ 
characteristic n-14 would turn rightwards even before reaching 5 = 0, producing 
the situation of figure 28. The solution of table 6 is then valid only up to the W 
characteristic which intersects, a t  6 = 0, the 2’ characteristic 50-51. The formation 
of shock-like transitions, discussed below, might further restrict this solution. 

If P,* > +, the flow a t  6 = 0 and in zone V becomes independent of events down- 
stream beyond the time r51, for then L? waves no longer propagate upstream. From 
table 6, the dimensionless flow at 6 = 0 up to the critical condition is given by 

up to T14 = 8. 

= a(1 -a). 

This has a maximum value (the choking flow rate of figure 24c) ,  namely (@a)lnax = 4, 
which is first reached a t  the conditions given previously and which then remains 
constant until other effects begin to influence the solution. 
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FIGURE 31. Intersecting 9 characteristics in zonc 111 wlion Pf > 2. (a )  Wave diagram near 

4 = 1. (b )  Scliernatic of area prcfiles near the time 770 of intersection of 9 waves. 

Intersection of characteristics at high pressurization. Applying the formulas for @ 
and %? in table 6 to  (68), one may readily integrate 6, T trajectories of the W and 2' 
characteristics in each zone. From this, one discovers that: ( a )  in zones I and IV, the 
2 and W characteristics are respectively parallel, both shifted along 5; ( b )  the 9 
characteristics in zone I1 and the 9 characteristics in zone I11 are respectively 
parallel, shifted along T ;  and ( c )  the 2 characteristics in zone I1 and 9 characteristics 
in zone I11 are respectively parallel, shifted along 6. 

From the foregoing i t  is evident that, if the flow remains subcritical, intersections 
do not occur. But when @ exceeds $? in zone 111, the 2' characteristics cross there as 
in figure 3 1.  

For reference, we note here that the integrated characteristics of figure 27 ( a )  give 
the co-ordinates of point 14 as T~~ = 4 (independently of P,* !) and = 4( I + &Pz).  
Now zone I lies entirely within the ramp region only if E14 < 1 ,  i.e. only if P,* < 4. 
We note further that  zone 111 is bounded by r4 = [(I + 2P,*)h - l]/P,*. 

From the integrated characteristics i t  may be shown that 42 = % in zone I11 at 
the time T = 1/P$ and a t  the location 5 = 1 - (1/2Pb). Since rI1 = +, i t  follows that 
the configuration of figure 31 ( a )  occurs when P,* > 2. 

Above and to the right of point 70 in figure 31 (a ) ,  three 2' characteristics pass 
through each point; hence @ and a are triple-valued. When P,* > 2,  therefore, the 
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mathematical solution for, say, a((, 7) develops as shown schematically in figure 
31 (b) .  Such a solution is physically inadmissible and must be modified in the region 
r > T , ~  and 6 > .$,o. By analogy with similar situations in gasdynamics, some type 
of shock-like transition presumably occurs. 

14. Numerical integrations of the characteristic equations 
When the term 2'f is present, solutions must generally be obtained by simultaneous 

numerical integrations of (54) and (55). Several points relevant to the numerical 
integrations now bear further discussion: dissipative losses, tributaries, numerical 
techniques, and boundary and initial conditions. Inasmuch as numerical calculations 
are specific, the discussion is in the context of the experiments of part 3, namely the 
collapse of a long tube by the application of external pressure (see figure 32). 

14.1. Skin-friction 

The appropriate form of the friction term C, in (7) and (55) depends on several cir- 
cumstances, such as: (a)  on whether the flow is laminar or turbulent; ( b )  on whether 
the time scale is such that the boundary layer is confined to a narrow region close to 
the wall or fills the passage in fully-developed flow; and (c)  on the shape of the tube 
cross-section, in particular on whether i t  consists of two parallel tubes (a  2 0.27) or 
one approximately round tube (a  

One cannot hope for great accuracy in the calculation of C,. Fortunately, in the 
experiments to be considered, this is not necessary, since wall shear stresses per se 
are not dominant physically, except in the latter states of collapse where an accurate 
estimate becomes possible. Accordingly, reasonabk approximations are adopted for 
C, in making numerical calculations, as summarized in table 7. 

0.27). 

14.2. Modelling a system of symmetrically branching vessels 

Several physiological applications involve a branching system of collapsible vessels. 
As a first approximation to such, we adopt a model which, with only minor modi- 

fications, may still be treated by the equations for a single tube. We assume (a)  that 
the branching system is symmetric, and ( b )  that the effects of secondary flows and 
other loss-producing mechanisms at the junctions may be accounted for by appro- 
priate modifications of the friction term. 

At a point located a t  the distance x upstream of the location where the several 
generations of the branching symmetric system merge into a single trunk, the system 
consists of n identical, parallel tributary vessels. Consider the equations of mass and 
momentum conservation for a control volume which includes a segment of length dx 
of each of the tributaries. 

The continuity equation is the same as for a single tube, but now Ao(x)  represents 
the total unstressed cross-sectional area of all n tributaries a t  the location x. Similarly, 
qL(x) is the total fluid influx per unit length entering the system as a whole. 

The momentum equation of a single tube is also essentially unchanged with one 
important exception. The frictional term must now be modified so as to account for 
the difference in flow resistance between a single vessel and a system of n vessels 
having the same total cross-sectional area. I n  equation (7) and table 7, therefore, 
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Flow conditions c; 
Laminar 

Developing boundary layefib) 

(a )  The flow is assumed laminar for Re < 4000, where Re is the Reynolds number based on 

(b )  Computed with the assumption of a linear velocity-time profile. 
(c) a = 0.27 corresponds to first contact between opposing vessel walls. For a < 0.27 the 

vessel is treated as two separate channels, each circular. 
(d) Poiseuille flow in a tube of circular cross-section. 
( e )  Poiseuille flow in an elliptical tube (Milne-Thompson 1950). 
(f) An approximation extracted from the results of Flaherty et al. (1972). 
(9) For Re > 4000, and assuming a hydraulically smooth tube of circular cross-section 

(Schlichting 1960). Also, for turbulent flow i t  is assumed that the boundary layer grows so rapidly 
in time that the flow is always fully developed. 

hydraulic diameter. 

TABLE 7. Approximate expressions used for the friction coefficient Cf. 

the area A ,  and the hydraulic diameter D, now refer to the individual tributary. If 
the flow is laminar, and quasi-Poiseuille, however, one may merely use the value of 
A,, for a single vessel having the combined area of all, and a t  the same time multiply 
the expression for C, by the total number n of tributaries. 

I n  many branching systems, this procedure precludes the necessity for retaining 
in (6) the term representing fluid influx, qL. The decision as to which model to  use 
depends primarily on the characteristics of the system itself. If the tributaries entering 
the trunk are not exposed to a variable external pressure, the most appropriate choice 
may be a function q,,(x) which is independent of time. On the other hand, if the tri- 
butaries are pressurized in the same manner as the rest of the system, they are most 
easily accounted for by modification of the frictional term as suggested above. 

14.3. Additional loss at a rapid expansion 

We have seen in §§ 12 and 13 that  certain types of external pressurization produce a 
constricting throat followed by a rapid expansion. Accordingly, a realistic calculation 
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must account for head losses associated with flow separation, and subsequent dissi- 
pative re-entrainment, in the region of rapid expansion in cross-section area (typically 
at the downstream border of the pressurized zone). 

In  order to estimate these losses, we assume (a)  that the flow in this region is quasi- 
steady, and ( b )  that the flow separates as a jet at the minimum area and subsequently 
fills the cross-section by viscous entrainment. Then the head loss is, approximately, 
the so-called ‘ Borda-Carnot shock loss’ (Prandtl-Tietjens, 1934) 

(BPU2+P)2- (&PU2+P)1 = -8PU31 -A11Ad2. (78) 

Here the subscripts refer to the upstream (1)  and downstream (2) positions of the 
rapid expansion. Comparison of (78) with the integrated form of the momentum 
conservation equation reveals that the separation losses may conveniently be in- 
corporated into the analysis by rewriting (2) in the following manner : 

where 

In this expression, h = 1 everywhere except in a region of rapid expansion where it has 
the special value 

(81) 

Defining r in this way produces a consistent result on both sides of the expansion, 
independent of the grid size used in the numerical calculations. 

The process of boundary-layer separation and reattachment actually occurs over 
a distance of several duct diameters. In  our calculations we have treated this distance 
as negligible, since the lengths of tubing are much larger than the reattachment 
distance. This model of the separation-reattachment process is thought sufficient to 
connect the variables a t  the boundaries of the expansion zone in a reasonably correct 
manner even though the details of the transition structure are lost. 

14.4. Numerical procedures 

Hartree’s method. The numerical integration of (54) and (55) was effected by a 
method due to Hartree (1952) in which the solution is found along characteristic 
curves which intersect a fixed, predetermined E-r grid. The curves along which the 
solution is computed are thus not continuous, but are shifted with each successive 
time step. Although this procedure forfeits the elegant appearance of continuous 
characteristic curves, it avoids the cumbersome interpolation otherwise needed for 
practical interpretation of the results. 

The details of marching the solution forward in time are similar to those described 
by Lister (1960). At a boundary, the intersecting characteristic curve is solved simul- 
taneously with the boundary condition there. 

Modi$ed solution procedure at shock-like discontinuities. As we have seen, the 
characteristic curves of one family may intersect, giving rise to a region of multi- 
valued solutions. Presumably, some mechanism not accounted for in the original set 
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of differential equations becomes important and dissipates enough energy to maintain 
a single-valued solution. By analogy with gasdynamic shock waves and open-channel 
hydraulic jumps, we postulate a rapid area increase through a transition region in 
which the head loss is given by (78 ) .  Observations of shock-like transitions in collap- 
sible tubes (Griffiths 1971a; Elliott & Dawson 1977; Kececioglu 1978) suggest that 
the transition resembles most closely the hydraulic jump. 

Methods used to accommodate shock-like discontinuities fall into two general 
categories which can be classified as either (a)  ‘shock-fitting ’, or ( b )  ‘through’ methods. 
Shock-Jitting techniques generally model the transition as a true discontinuity and 
use a set of ‘jump’ conditions to bridge the gap between two neighbouring smooth 
solutions. Through methods, conversely, allow one to use the same finite difference 
formulation of the governing equations throughout the entire solution space. Methods 
of this type have been widely used in the analysis of unsteady open channel flows 
(Abbott 1975). 

Procedures used. In the pressurized region, away from regions of discontinuity, we 
used Hartree’s method. 

In  the region where discontinuities might occur, a procedure similar to the ‘through ’ 
method was employed. The conservation equations, ( 6 )  and (79 ) ,  were used in an 
implicit difference form. They were soIved by applying the mass and modified momen- 
tum conservation conditions at alternate points in a leap-frog fashion. 

14.5. Boundary and initial conditions 

Here we refer to the specific experiments discussed in part 3 and illustrated by figure 
32. 

Upstream boundary condition. The flow originates a t  the level hA in a high-pressure 
reservoir, and passes through a linear resistance, R,, before entering the test section. 
Thus the boundary condition entering the collapsible tube, a t  x = 0,  is 

The value of R, was determined by a preliminary calibration. 
Downstream boundary condition. The compliant tube of figure 32 that comprises 

the test section discharges into two rigid ducts in series, each having resistance and 
inertance, separated by a capacitance ta.nk. Characterizing the resistances by R, 
and R,, the fluid inertances by P, and 5?,, and the capacitance by C,, the pressure 
changes between the nodal points marked on figure 32 are given by the following 
equations: 

and 

where the subscripts ( ), and ( ), denote the first and second rigid ducts, respectively. 
The last term in (83 ) ,  involving the loss coefficient h, (which we assume equal to 0.55), 
accounts for a dissipative loss due to the abrupt changes in vessel diameter at  all 
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FIGURE 32. Schematic of the flow circuit and test section. 

downstream locations and is computed using standard methods (ASHRAE 1969). The 
resistances R, and R2 are related to wall shear stress and therefore depend upon the 
instantaneous flow conditions. We estimated them by means of the same approxi- 
mations as for the collapsing vessel (table 7) .  

Initial condition. In  the initial steady state, the collapsible tube is somewhat dis- 
tended. Thus the dominant resistance of the system is concentrated upstream of the 
test section. The initial flow resistance in the collapsible tube may be estimated suffi- 
ciently well by Poiseuille’s formula, assuming A = A,(x) ,  where Ao(z)  is the un- 
stressed cross-sectional area. Accordingly, the initial flow rate a t  t = 0 is calculated as 

In  the experiments, as in this expression, qL is zero; however, a non-zero qL can be 
introduced with only minor modifications. 

Part 3. A simple experiment and its interpretation 
15. Description of the experiment 

15.1. A.pparatus and procedure 

The experiment illustrated in figure 32, although simple, exhibits many of the interest- 
ing and peculiar phenomena of unsteady flow in collapsible tubes. I n  addition, it 
contains most of the elements essential to a simulation of external compression of the 
veins or arteries. 

Flow circuit. A single collapsible tube is attached to rigid ducting systems upstream 
and downstream, each of which may be simulated by a lumped-parameter model. 
Liquid from a constant-head supply reservoir drains through a linear resistance RA 
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into the upstream end of the collapsible tube. The liquid leaving the tube enters the 
first of two rigid ducts which are separated by an air capacitance chamber. Leaving 
the second rigid duct, the liquid passes into a constant-head discharge reservoir. 

Test section. The test section (figure 32) contains a single thin-walled latex rubber 
tube, 56 cm long, extending the entire length of a transparent cylindrical chamber 
which is divided into two parts approximately equal in length. External air pressure 
is transmitted to the upstream half of the collapsible tube through a thin, highly 
flexible plastic compression sleeve. The downstream part of the chamber is vented 
to the atmosphere. Thus the gauge pressure applied externally to the collapsible 
tube is essentially uniform throughout the upstream chamber, and falls to zero in a 
narrow transition zone, a t  the downstream edge of the compression sleeve. 

This construction, with the external pressure applied through the sleeve, was 
devised to avoid the artifacts introduced near the downstream attachment zone when 
a collapsible tube mounted on rigid tubes is pressurized along its entire length (Shapiro 
19773). Furthermore, the construction simulates the pressure ramp exerted on a deep 
vein or artery of a pressurizing boot or cuff which surrounds a leg. 

Properties of the collapsible latex tube. These have been described in 3 2.3 and are 
summarized in figure 1. 

Instrumentation. Unlike flows in rigid systems, flow measurements in collapsible 
tubes present formidable difficulties with regard to local observations of static pres- 
sure, cross-sectional shape and area, mean velocity, flow rate, and velocity profile. 
Only a few measurements can be made easily, as described below. 

The elevations hA and h, in the constant-head reservoirs were measured on mano- 
meter scales. 

A 0.033 inch internal diamet,er open-ended steel catheter was inserted into the tube, 
from the upstream end, to various longitudinal positions. This led to one side of a 
differential transducer, the other side of which was connected to the fluid surround- 
ing the latex tube. Thus the transducer exhibited the transmural pressure, ( p  - p J .  

Installed in the first length of rigid tube just downstream of the test section were a 
wall static pressure tap and an electromagnetic flowmeter. 

Test procedure. Prior to the application of external pressure, a steady flow was 
established, and steady-state measurements of pressure, transmural pressure, and 
flow were made. 

In  a test run, the upstream chamber was pressurized above atmospheric in roughly 
an exponential fashion, characterized by the maximum gauge pressure achieved, 
p,,,,, and by the rise time, tile, required for the gauge pressure to reach ( 1  - e-l) of 
this maximum. 

During the pressurization, all the measurements mentioned earlier were recorded. 

15.2. Parameters of the experiments 
I n  addition to serving the broad objectives of ( a )  exhibiting the general features of 
flow in a collapsing tube, and ( b )  providing a means for testing the theoretical studies, 
the experimental apparatus was designed to simulate compression of the veins of the 
lower leg. This physiologic application largely determined the ranges of parameter 
variations, although it is believed that the results are general in nature except perhaps 
for very viscous flows. 

Exact modelling ofthe veins isnotreally practicableowing to the complex andvariable 
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Test 
no. 1 

27 
0.25 
0 
3.1 
3.2 
0.01 1 

0.317 

1.26 

22 

22 

P (gm cm-*) 1.00 13 

p (gm cm-'8-1) 0.01 14 

(a)  Initial transmural pressure in 15 

( b )  Initial transmural pressure in 16 

(c) Lengths, L, and areas, A, of the rigid 17 
18 

downstream chamber. 

upstream chamber. 

tubes upstream (1) and downstream (2) 
of the air capacitance. 19 

TABLE 8. Summary of flow experiments. 

Parameter varied 

- 10 p e - x  - 
Pe,, - - 17.5 

tllc = 0.07 
t,le = 0.15 
tlle = 0.78 

Pe,,, = 62 

C" = 0.002 
C" = 0.082 
L, = 41.2 
L, = 9.0 

nature of the venous network, Thus, the choice of system parameters was to a certain 
degree arbitrary, but in each case these fell into the anticipated physiologic range. 

The complete experimental sequence is summarized in table 8. In  the first two 
columns are the parameters for test no. 1, which was taken as a reference for com- 
parison. In  each other test, all the parameters except for the one or two shown in the 
last column were the same as for test no. 1. 

16. General character of the collapse process 
The results for test no. 1 ,  displayed in figure 33, indicate the general character of 

the flow and pressure traces observed in all the experiments. Several features are note- 
worthy. 

16.1. The wave of collapse 

The time course of external pressure application of test no. 1 is shown in figure 33 (a) .  
The corresponding transmural pressures at five locations inside the collapsing tube 
and at the point of the flow measurement in the rigid tube just downstream of the 
test chamber are shown in figure 33 (c). Each of the five curves measured in the collaps- 
ing tube exhibits a sharp departure from nearly zero transmural pressure at  a time 
that is successively later for locations further and further upstream. Having in mind 
that the transmural pressure also determines the area, the tube collapse is seen to be 
far from uniform. The data, supported by visual observations, show that initially the 
tube collapses only a t  the downstream end, and that a wave of collapse, as it were, 
proceeds from the downstream end to the upstream end. Concurrently with collapse, 
the tube effectively becomes much stiffer by reason of the strong nonlinearity of the 
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FIGURE 33. Results for test 1. (a )  External applied pressure w8. time. ( b )  Volume flow rate at exit 
of test section, v8. time. (c) Transmural pressure difference, p -pe, as a function of time, a t  the 
locations x / L  = 0-06, 0.15, 0.24, 0.33, 0.42 within the collapsing tube; and at x / L  = 1.0 at the 
end of the unpressurized segment (dashed line). 

tube law (figure 1). Consequently, small volume excursions give rise to increasingly 
large changes in transmural pressure as the vessel collapses to smaller and smaller 
areas. 

16.2. Flow rate at exit 

As seen in figure 3 3 ( b ) ,  the flow rate Q l ( t )  a t  the exit of the test section first rises in 
response to the application of external pressure; then reaches a peak, often before the 
external pressure attains its maximum; then subsides to a generally lower level; and 
finally decreases toward the original steady-state flow as a new equilibrium state is 
established. In cases of non-zero initial flow, the final steady-state flow rate is slightly 
below the original one due to the additional flow resistance in the collapsed part of the 
tube. 

Because the fluid at [ = 1 is unaffected until compression waves arrive from the 
pressurized zone, the flow rate does not begin to rise immediately after the pressure 
is applied. In  this regard, we note that Q l ( t )  is not the same as the flow rate at  the 
exit of the pressurized zone (Lj 0-5),  nor is it  identical with the flow rate in the 
collapsible tube a t  its downstream end but before the attachment to the rigid tube. 
However, since the collapsible tube is relatively stiff at  positive transmural pressure, 
the displayed curve of Q l ( t )  is a fairly good indicator of the flow rate discharged from 
the pressurized segment of the collapsible tube. 
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16.3. Evidence of critical speed and choking 

After the strong initial transient, damped ringing oscillations are superimposed upon 
a flow rate that  remains roughly constant for a substantial time. These are due to  the 
lumped inertance-capacitance discharge system which is excited by the incoming flow. 
Significantly, the oscillations are not transmitted upstream into the collapsing portion 
of the tube: except a t  [ = 0.42 they are absent in the pressure recordings. The position 

= 0.42 is located in the pressure ramp, presumably downstream of the point where 
the flow speed has become critical. Disturbances do not propagate upstream of this 
point. The oscillations are heavily damped owing to various head losses. They subside 
at approximately the same time that the tube approaches a new static equilibrium 
with the elevated external pressure, but this is coincidental. 

Attainment of the critical speed and choking are also suggested by the fact that, 
apart from the artifact of ringing, the mean flow rate is nearly constant for a sub- 
stantial period after the initial transient. The slow decay in mean flow rate is attri- 
butable to the increasing frictional losses upstream of the choke point. 

16.4. The three phases of the collapse process 

One may usefully think of the complete process of tube collapse as occurring in three 
phases, in each of which different physical phenomena are dominant. 

Phase I :  the initial transient. This is identified in the volume flow rate trace as the 
period of flow acceleration up to  approximately the initial peak in Ql( t ) .  

Owing to  the high linear flow resistance upstream of the test section, and also be- 
cause the supply reservoir pressure always exceeded the applied external pressure, 
emptying occurs in the downstream direction. The experimental observation, men- 
tioned earlier, that the tube begins to  collapse only near the downstream boundary 
of the compression sleeve, is precisely what was found theoretically in parts 1 and 2, 
and may be explained physically as follows. 

When the external pressure is applied, the internal pressure a t  first increases by 
exactly the same amount because, until some collapse occurs, the transmural pressure 
must remain unaltered. A gradient of internal pressure therefore exists initially only 
a t  the location of external pressure gradient, that  is, near the downstream edge of the 
compression sleeve. Since the fluid is accelerated only by means of such a pressure 
gradient, the volume flow rate first begins to  increase a t  this location. Continuity 
requires that aQ/ax+aA/at = 0; thus the space gradient of Q that is established 
requires a simultaneous time gradient of A .  Accordingly, the vessel begins to  collapse 
in the zone of acceleration. Rarefaction waves propagating upstream into the pres- 
surized zone accelerate the fluid there in the downstream direction, also causing the 
area there to  decrease, while the vessel continues to collapse a t  the downstream end. 
As the throat formed near the downstream end of the pressurized zone becomes pro- 
gressively smaller, the exit flow rate is reduced by the simultaneous effects of the 
Bernoulli pressure drop, the pressure decrease due to the local acceleration aulat, and 
the frictional pressure loss, all of which are magnified by the reduced area. These 
effects in combination produce an abrupt peak in volume flow rate, even though the 
external pressure may still be rising. 

Phase 11: quasi-steady emptying. Two related events, the flow rate falling from its 
peak to a much lower level and the establishment of a quasi-steady throat in the 
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region of minimum cross-sectional area, mark the beginning of the quasi-steady phase. 
This is characterized by flow limitation or choking near the upstream end of the 
pressure ramp where the flow velocity now equals the wave speed. As time progresses, 
the choking flow rate slowly decreases owing to increasing head losses, and the wave 
of collapse propagates upstream more and more slowly. The accompanying ringing 
oscillations are an artifact of the discharge system. 

Phase III: viscous drainage. Finally, as the length of the collapsed region increases, 
and the Reynolds number becomes progressively smaller, viscous effects come to 
dominate. This marks the beginning of a viscous drain-off phase which is analogous 
to a distributed nonlinear, variable capacitance discharging through a distributed 
linear but variable resistance. The liquid remaining in the tube is slowly squeezed 
out as the vessel asymptotically approaches its new equilibrium configuration. 

I n  this case, phase I11 occupies a relatively brief period, but if the tube were much 
longer, or if the fluid viscosity were increased over that of test 1, i t  would account for 
a much larger fraction of the total emptying period. 

17. Order-of-magnitude estimates 
Before examining in 6 18 the effects of various parameters on the results, and the 

degree to which full-blown numerical integrations of the characteristic equations are 
capable of predicting the experimental results, we present here simple order-of- 
magnitude analyses for each of the three phases of the collapse process. 

17.1.  Phase I :  the initial transient 

The two observable features which characterize the initial transient are the peak flow 
rate, Qp, and the time, t p ,  at which this occurs. 

As the external pressure p,(t) is first applied, simple compression waves run down- 
stream and simple rarefaction waves upstream, as described in § 12 for a spatial step 
in p ,  and in $14 for a spatial ramp in pe.  At small times, the flow curve of figure 24 ( d )  
may be approximated as linear. Thus, 

Q(t )  z K Q A O c O b e ( t ) / ~ c t l ,  (87)  

where K Q  is a numerical constant; for a spatial step change inp,, K Q  2 0.5. Further- 
more, for small times, p,(t) may be approximated by a linear function 

~ e ( t )  Pet, (88) 

where p,  = dpe/dt is taken as constant. 

a linear relationship between Q and t that  indeed approximates the initial portion of 
figure 33 (b) .  

From the results of $ $ 4  and 13, and from figures 2 4 ( b )  and 29, it  appears that, 
initially, fluid is transported from the collapsing upstream portion of the pressure 
ramp to  the inflating downstream portion. In  this regard, note that the cross-sectional 
area in zone I (figure 27)  is constant, so t h a t  the central segment in the pressure ramp 
acts like a rigid tube. Now the inflating segment of tube is much stiffer and, con- 
comitantly, haS a much higher wave speed than the collapsing segment. Owing to both 

3 F L M  95 
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these effects, the total fluid volume that has passed out of the pressure ramp up to the 
time tp may be considered to  have come principally from the volume change that 
occurs inside the ramp region. That the peak is usually much larger than the choked 
flow rate from the upstream region supports this assumption. We attribute the peak in 
the volume flow rate Q p  to  the fact that  this volume is of limited size, and that further 
transport of fluid is a t  a much lower rate because it must come from the upstream 
regiona relatively (which has low wave speed) through a constantly diminishing throat. 

We may approximate the volume that can be disgorged from the pressure ramp as 
K ,  A ,  L,, where LR is the length of the pressure ramp, and K ,  is a numerical constant, 
of order of magnitude, say, K ,  4. Assuming that this volume is the time-integral 
of (89) from t = 0 to  t = tp ,  namely &Q,tp, we find that 

These are crude estimates, to be sure, but they represent the essential physics 
sufficiently well to portray correctly the relationships among the flow variables during 
the initial transient. 

17.2. Phase II: quasi-steady emptying 

If we ignore the decaying flow oscillations in the region downstream of the collapsing 
zone, each test exhibits a period of relatively constant flow rate following the initial 
transient peak. This agrees with the theoretical findings ( $ 3  12 and 13) of flow limi- 
tation, or choking, a t  the edge of a region of uniformly applied external pressure. 
Since the limitation occurs a t  a condition of u = c, it is similar to  the choking pheno- 
menon familiar in gasdynamics and which occurs also for steady flow in a collapsible 
tube (Shapiro 19773). 

Previously we have associated the transient peak in Q(t) with vessel collapse in 
the region of the pressure ramp. Once this collapse has occurred, however, the flow 
rates into and out of the ramp region must be nearly equal. Since the flow rate upstream 
is limited to  the first plateau of figure 24 (c), the flow rate downstream must be limited 
as well. As viscous effects become increasingly important with the growing length of 
the throat region, however, the locus of possible states will fall below the curve shown 
in figure 24 (c), which was constructed for inviscid flow. This explains the slow temporal 
decay in volume flow rate beginning shortly after the initial peak. 

For short tubes and fluids of low viscosity, only a fraction of the vessel empties 
before either viscous or end effects become dominant. During this period the vessel 
empties a t  a nearly constant rate Q, whose upper bound is given roughly by the first 
peak in %!a on figure 24 (c): 

Q, 2 0*13A,~ , .  (91) 

If Q,,, were nearly constant throughout a large fraction of the emptying period, the 
time t ,  required to empty a tube of length L, would be approximated by 

This, we note, is about eight times greater than the time of wave passage. 
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17.3. Phase III: viscous drainage 
As the extent of the collapsed region increases and the flow speeds decrease, viscous 
effects eventually become dominant. The flow rate unchokes and asymptotically goes 
toward zero. 

We assume that the appropriate Reynolds number is sufficiently small so that the 
flow is essentially inertia-free. Thus it may be treated as locally-Poiseuille in character, 
in which case the momentum equation reduces to 

where p is the coefficient of viscosity and K,  (a) is a pure number that depends only 
on the shape of the cross-section. For a circular tube, K ,  = 8n (the familiar value for 
Poiseuille flow). For a collapsible tube, K f ( a )  is only a weak function of a; in the 
similarity range, K,  g 70, and in fact this value is quite accurate in the range a < 0.36 
(Flaherty et al. 1972). 

Combination of (93) with continuity (for qL = 0 ) )  equation ( l), and with the wave- 
speed definition, equation (4), leads to a diffusion-type equation, 

where 

-= aa -[J(a$], a 

pA,ct aW(a) 
J ( a )  E - - 

p K,(a) 

at ax 

is a highly nonlinear diffusion coefficient. During the viscous drainage phase, therefore, 
the last vestiges of collapse proceed upstream in a diffusion-like manner. 

Similarity solutions. Introduction into (94 a )  of the well-known similarity variable 
of the form x/t& for diffusion-type problems yields the ordinary differential equation 

where 

Unfortunately, however, the initial and boundary conditions cannot be generally 
expressed in terms of 6 alone. Consequently similarity-type solutions of the viscous 
drain-off phase do not strictly exist for the problem a t  hand. Yet it is a reasonable 
conjecture that the general form of similarity solutions to the diffusion equation pro- 
vides clues to the actual behaviour even when the boundary and initial conditions are 
not exactly of similarity form. To the extent that this is true, the following remarks 

The exit flow rate & ( t )  is given by the time rate of decrease of tube volume. Thus 
"PPlY * 

where the integral extends over the entire collapsing length. Now, since it is presumed 
that a z a({), it  follows that, in the viscous drain-off phase, 

3-a 
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where t is measured from the imaginary onset of inertia-free emptying, t,. The corres- 
ponding volume of fluid discharged is given by 

Accordingly, the flow rate varies as the inverse square root of the viscosity, and 
time required for equal volume displacements varies directly with the viscosity. 

18. Experimental results and comparison with numerical integrations 
Numerical simulations, using the techniques described in 8 14, were carried out for 

each of the tests listed in table 8. 
For these calculations it was assumed that the pressure ramp a t  the downstream 

edge of the pressurized zone was S-shaped, consisting of two matched quadratic 
curves, with a total length of either 5 or 10 cm. The former was selected unless it 
displayed inadequate computational stability. The solutions were generally insensitive 
to changes in this parameter with, however, one exception: the frequency of the flow 
oscillations was lower for the greater ramp length. 

18.1. Experiments with different maximum applied pressure 
I n  tests I, 2, 3 and 4, all the experimental parameters were held nearly constant, 
except for the magnitude of the applied pressure, which varied over the range 10 to 
62 cm H,O. 

Figure 34 shows that the theoretically predicted time history of the volume flow 
rate at the exit of the test section is in generally good agreement with the experimental 
results. Except for test no. 2, the initial transient phase is remarkably well reproduced 
by the theory. The average level of flow during the quasi-steady period appears to be 
somewhat over-estimated. As a result, the collapse process ends earlier in the simu- 
lation than in the experiment. This discrepancy could easily be due to inaccuracies 
in the tube law, particularly the effects of longitudinal tension and curvature, and 
errors in the difficult task of estimating head losses following the throat region. 

I n  order to ascertain the degree of success the simulation achieved in predicting 
general trends, several characteristic parameters of the flow curve were selected and 
each was plotted in figure 35 as a function of applied pressure for both experiment 
and theory. The parameters shown are (1) the peak flow volume flow rate, Q p ;  (2) 
the time tp a t  which the flow maximum occurs; and (3) the time t, required for the 
tube to empty, approximated by the time at which the volume flow rate trace first goes 
negative. 

Both t p  and t, approach a more or less constant minimum as the external pressure 
is increased, while the peak flow rate appears to level off.. 

Examination of figure 34 shows that the quasi-steady flow rate in phase I1 is in- 
sensitive to the applied pressure, a t  least when the latter is above a certain threshold 
value (in this case, 17 cm H,O seems sufficient). A similar effect is well established in 
pulmonary physiology (Mead et aZ. 1967): a t  a fixed lung volume the volume flow rate 
during forced expiration no longer increases with applied pleural pressure after the 
latter has reached a certain value. There is some support for the conjecture that this 



Unsteadyjiow in a collapsible tube 

- - 
I v1 

69 

- 
Test no. 2 

- 
Test no. 3 t 

I 1 I 1 I 

FIGURE 34. Volume flow rate us. time a t  exit of test section, for different maximum applied 
pressures. Experimental: dashed lines. Theoretical: solid lines. 

Test no. 2 3 1 4 
P, ma= (cm HZO) 10 17.5 27 62 

‘effort-independent ’ phenomenon is related to choking within the trachea a t  the 
critical speed (Elliott & Dawson 1977). 

Although the theoretical and experimental curves are displaced by as much as 
25 % the agreement in the general character of the curves is good. 

18.2. Variations in the rate of pressurization 

The influence of changes in compression rate was investigated in test nos. 1, 5, 6, and 
8, with results as shown in figures 36 and 37. The format is the same as in the previous 
comparisons. These results, as in the previous set of experiments, indicate relatively 
mild trends toward higher peak flow rates and lower values of t, for more rapid 
compression rates. 

Again, t, is nearly constant. If one wishes to minimize the time for complete empty- 
ing, therefore, neither raising the maximum pressure nor applying the pressure more 
quickly has a pronounced effect once certain values have been exceeded. This is in 
accord with the mechanism of the initial transient and with the phenomenon of 
choked flow. 

The theoretical curves are again in rather good agreement with the experiments, 
considering the several uncertainties in application of the theory. 
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FIGURE 35. C'haracteristic flow parameters as functions of maximum applied pressure. 
Experimental: dashed lines. Theoretical: solid lines. 

18.3. The eflect of doionstreain parameters 
The significance of the inertive-resistive and capacitive elements located downstream 
of the test section was evaluated in an extensive testing sequence: tests 9-15 in 
table 8. The results were notable in that they produced relatively little effect on the 
collapse process as reflected in the characteristic flow parameters Q, and t,. 

Four tests of this series are compared in table 9, with test no. 1 as a reference. 
I n  this table, each number represents the ratio of the value of the parameter of the 
indicated test divided by that of test 1.  For each test, the ratios are given for both the 
experimental measurement and the theoretical prediction. 

I n  addition to  QI, and t,, a third parameter is provided, namely the elapsed time 
between the first flow maximum and the first flow minimum, or, equivalently, the 
half period of the flow oscillations. This was the only flow variable which did change 
significantly with relatively large changes in the downstream flow parameters. 

The mechanism producing the observed oscillations can be described in rather 
simple terms. The hydraulic system downstream of the throat consists essentially of 
three capacitors separated by two inertive-resistive elements. An impulse (the first 
flow peak) excites the system and causes i t  to ring a t  a frequency determined by 
the inertance and capacitance of each of the elements. Even lowering the discharge 
reservoir head, hB, alters one of these elements, the capacitance associated with the 
compliance of the latex tube downstream of the throat, owing to  nonlinearities in 
the tube law. 
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As noted earlier, the oscillations do not propagate upstream of the throat and have 
little or no effect on the flow behaviour in the collapsing portion of the tube. Changes 
upstream of the throat, then, can be brought about only by modifying either the 
pressure cycle (as described earlier), the upstream conditions, the tube properties, or 
the fluid properties. 

18.4. The eSfect ofJluid viscosity 

Using a glycerine-water mixture, the fluid viscosity was raised in test no. I9 by a 
factor of 5.5 .  The experimental and theoretical flow traces for this test, figure 38, 
exhibit two important features. First, the initial transient, as expected, is largely 
inertia-dominated; even changing the viscosity by about sixfold caused very little 
change in the shape and magnitude of the initial flow peak. Second, a viscosity change 
of this magnitude significantly lengthened the viscous drainage phase, to the extent 
that i t  can no longer be neglected in estimating the total emptying time of the vessel. 
In both the theory and the experiment, it took more than twice as long to empty the 
vessel as compared with all previously discussed tests. 

18.5. Non-zero initialJlow rate 

The baseline flow rates prior to pressurization were varied in tests 16-18 by changes 
in upstream flow resistance while the supply pressure and all other parameters 
were held constant. The maximum baseline flow rate was roughly equal to the 
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FIGURE 37. Characteristic flow parameters as functions of rise time. 
Experimental: dashed lines. Theoretical: solid lines. 

Test number 
r 

9 1 1  13 
1 

15 
r--------3 7- -7 & 

Variable Exp. Theory Exp. Theory Exp. Theory Exp. Theory 

Q ,  1.0 0.98 0.89 0.86 1.05 1.00 0.97 0.89 
t e  1.01 0.98 1 .11  1.06 1.08 1.00 1.08 1.06 
Half period of 0.77 0.71 1.16 1.36 0.99 0.93 1.51 (a) 
oscillation 

( a )  Oscillations were too weak to permit accurate measurement of the oscillation period. 

TABLE 9. The effects of changes in downstream parameters. (Each number is the ratio of the 
value of the parameter of the indicated test divided by that of test I . )  

predicted limiting flow rate using the approximate analysis of (Qi), which was, in 
turn, approximately one-third of the typical values of peak flow rate. 

Supporting the hypothesis that most of the fluid volume expelled during the initial 
transient phase originates in the pressure-ramp region, Q p  remained nearly constant 
in these tests. 
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FIGURE 38. Results for test 19, with a viscosity 5.5  times that of test 1. 
Experimental: dashed line. Theoretical: solid line. 

In  the final equilibrium state the vessel is not uniformly collapsed. Owing to fric- 
tional pressure losses, the area is greater a t  the upstream end than a t  the downstream 
end. I n  general, the increased frictional resistance a t  the throat, accompanying higher 
flow rates, leads to a more inflated final state. 

In  separate tests we have found that the degree of collapse is insensitive to the 
level of applied pressure. As the pressure is increased, a balance is struck between 
the higher driving pressure in the upstream fluid and the greater frictional losses 
at  the throat. This balance results in a vessel profile which is relatively independent 
of the applied pressure. 

18.6. Comparisons with the order-of-magnitude estima,tes 

We have observed that, in nearly all the tests, the time to empty the vessel remains 
relatively constant. This is in good qualitative agreement with the prediction of (92) 
based on constant values of c,, and L,. The quantitative estimate obtained using (92) 
is about two-thirds of the experimental value, which, considering the nature of the 
approximation, is quite good. 

This order-of-magnitude estimate was based on the assumption that the viscous 
drain-off period (phase 111) accounts for only a small fraction of the total process. 
In  the range of these tests (with the exception of test no. 19), that assumption seems 
to be satisfied. The postulated dependence oft, on LJc ,  has been further supported 
by additional experimental and theoretical results, not reported here, in which vessels 
with uifferent wall thicknesses were found to empty either much more slowly or more 
rapidly depending on whether the wall was more or less flexible. 

In  other exploratory tests not reported here tests over a wide range of viscosities 
gave approximate verification to the similarity conjectures of (96) and (97). 

The claims of the order-of-magnitude analysis concerning the time and magnitude 
of the peak flow rate cannot easily be verified for the following reasons. First, the 
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FIQWRE 39. Detailed results of numerical calculations for the parameters of test 1, with 
A, = 1.06 om2 and c, = 60 cm s-l. (a)  Flow rate 2)s. time a t  5 locations. ( b )  Transmural pressure 
v8. time at 4 locations. ( c )  Area vs. distance at 6 times. ( d )  Speed index %I%? 2)s. time 
at 4 locations. 
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experimental measurements were made a t  the exit of the test section located a 
considerable distance downstream of the throat. Flow conditions there are strongly 
influenced by the nature of the boundary condition. Second, we assumed previously 
that the effect of reflexions can be neglected. In contrast, the numerical results clearly 
indicate that reflexions do reach the edge of the pressurized region weil before the peak 
occurs, causing flow disturbances not accounted for in the order-of-magnitude analysis. 

19. Theoretical details of the collapse process 
Having demonstrated the general validity of the theory as presented, we may now, 

with some confidence, use numerical simulations to gain information concerning de- 
tails of the collapse process that would be most difficult to obtain experimentally. 

Figure 39 exhibits the detailed numerical solution for the case of a uniform tube 
( A ,  = 1.06 cm2; co = 60 cm/s), with the parameters of pressure application and fluid 
and boundary parameters all as in test no. 1 .  
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19.1. VolumeJlow rate 

Figure 39(a) shows the normalized volume flow rate (&/A,c,) as a function of nor- 
malized time (co t /L)  a t  five locations: one just downstream of the pressure ramp, 
one inside the upstream end of the ramp, and three a t  successive locations further 
upstream in the region of uniform compression. Violent flow oscillations are evident 
only in the trace downstream of the ramp. Their absence in the other four traces 
signals the presence of a supercritical region which effectively isolates upstream 
points from disturbances created downstream. The two frequencies superimposed in 
the downstream flow trace represent ( a )  wave reflexions back and forth in the un- 
pressurized region of the collapsible tube, and (b)  ringing associated with the coupling 
between the compliant tube and downstream flow elements as mentioned earlier. In  
the experiments of 5 18, the former are largely damped downstream of the collapsible 
tube, apparently much more so than in the theory, and therefore are barely detectable 
in the flow traces. 

The curve representing volume flow rate a t  5 = 0.39 serves to illustrate some of 
the predictions of the order-of-magnitude analyses. The initial peak is higher than 
the estimate of (91) partly because the tube is initially in a more inflated state 
than was assumed previously. Modifying figure 24(c) to account for this initial 
condition, we find that the peak corresponds well with the estimate of simple-wave 
theory. This curve demonstrates also the slowly decaying flow rate characteristic of 
phase 11. 

At larger times we find the end of phase I1 strongly delineated from the final phase 
of viscous drainage by an abrupt decrease in flow rate. Afterward the flow rate falls 
asymptotically to zero as the tube empties. 

19.2. Transmural pressure 

Figure 39 (b)  shows that, upon the application of external pressure, the transmural 
pressure drops rapidly to nearly zero, the change propagating a t  the wave speed in 
the initially distended tube. 

Further changes, however, occur much more slowly. At each location, the time 
corresponding to vessel collapse can be identified as the sudden departure from zero 
transmural pressure. This event, too, propagates in a wave-like fashion but at a much 
slower speed. It has the appearance of a diffusion-like wave and moves progressively 
more slowly as the vessel collapses. 

19.3. Cross-sectional area 

The successive area profiles are shown in figure 39 (c) in the form of normalized cross- 
sectional area versus distance at six different times. These curves dramatically ex- 
hibit the necking down that occurs very early in the collapse process and which limits 
the rate of further emptying of the vessel. The necked-down region or throat develops 
first at  the upstream end of the ramp; at  the same location where, at  r = 0.5, a shock- 
like transition appears. Subsequently, the throat moves downstream until a relatively 
constant profile is achieved within the ramp zone. 

The curves also show clearly how the collapse proceeds upstream in a wave-like 
manner. 
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19.4. Speed index 

Finally, since many of the predicted flow phenomena depend upon whether or not 
the flow becomes supercritical, figure 3 9 ( d )  shows a/%? as a function of time a t  four 
different upstream locations. Only a t  6 = 0.39, a point just inside the upstream end 
of the ramp, does @,I%? temporarily exceed unity. Following a short supercritical 
interval, which corresponds in time to  the initial transient, the flow speed returns to 
the critical value and then slowly decays in accordance with the flow-rate trace. 

There is some evidence of a shock-like transition in the uppermost curve (5 = 0.39) 
at r 2 0.7. 

19.5. Further results 

These calculated results, toget'her with the experimental data, clearly show the im- 
portance to the collapse process of the formation of a flow-limiting throat. 

As suggested by several of the examples in part 1, this phenomenon can to  a large 
degree be eliminated by different and somewhat more complex modes of pressuriza- 
tion: in particular, (a )  through application of the external pressure in a 'milking' 
wave; or ( b )  by applying i t  as a non-uniform gradient, higher a t  the upstream end. 
These indications of the linearized theory are confirmed by numerical calculations 
based on the nonlinear theory of § 14. 
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